000857552 001__ 857552
000857552 005__ 20240712112833.0
000857552 0247_ $$2doi$$a10.1016/j.ssi.2018.08.012
000857552 0247_ $$2ISSN$$a0167-2738
000857552 0247_ $$2ISSN$$a1872-7689
000857552 0247_ $$2WOS$$aWOS:000449131900027
000857552 0247_ $$2altmetric$$aaltmetric:51019198
000857552 037__ $$aFZJ-2018-06543
000857552 041__ $$aEnglish
000857552 082__ $$a530
000857552 1001_ $$0P:(DE-Juel1)161422$$aSun, Ruoheng$$b0$$eCorresponding author$$ufzj
000857552 245__ $$aMonitoring the reaction between lithium manganese spinel and Li2MnO3 during heat treatment using Electron Paramagnetic Resonance (EPR) spectroscopy
000857552 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000857552 3367_ $$2DRIVER$$aarticle
000857552 3367_ $$2DataCite$$aOutput Types/Journal article
000857552 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548257448_28686
000857552 3367_ $$2BibTeX$$aARTICLE
000857552 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857552 3367_ $$00$$2EndNote$$aJournal Article
000857552 520__ $$aThe composition of lithium manganese spinel Li1+xMn2−xO4 (LMO) cathode materials for lithium-ion batteries is very sensitive with respect to temperature conditions during processing. Elevated calcination temperatures promote the formation of Li2MnO3 secondary phase in addition to the spinel phase. Under heat treatments at lower temperature secondary-phase Li2MnO3 can react with the LMO spinel main phase and form a new spinel phase with higher Li-content. This solid state reaction has been observed but its kinetic behavior has not been investigated. An experimental approach to monitor the change of Li2MnO3 amount during heat treatment on lithium manganese spinel materials is addressed by implementing Electron Paramagnetic Resonance (EPR) spectroscopy. It is shown that for materials prepared initially at 1073 K, the reaction occurs from 673 K to 973 K and it is active between interface of spinel and Li2MnO3. The Li2MnO3 amounts after varied heating temperatures and holding times were quantified and analyzed. The reaction kinetics, based on a quantitative analysis of the EPR resonances, are discussed by using pseudofirst-order and second-order rate laws. Detailed data analysis indicates that the reaction follows different kinetics depending on the microstructure of Li2MnO3.
000857552 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857552 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000857552 588__ $$aDataset connected to CrossRef
000857552 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1$$ufzj
000857552 7001_ $$0P:(DE-Juel1)165985$$aTaranenko, Svitlana$$b2$$ufzj
000857552 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b3$$ufzj
000857552 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b4$$ufzj
000857552 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2018.08.012$$gVol. 325, p. 201 - 208$$p201 - 208$$tSolid state ionics$$v325$$x0167-2738$$y2018
000857552 8564_ $$uhttps://juser.fz-juelich.de/record/857552/files/1-s2.0-S0167273818306180-main.pdf$$yRestricted
000857552 8564_ $$uhttps://juser.fz-juelich.de/record/857552/files/1-s2.0-S0167273818306180-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857552 909CO $$ooai:juser.fz-juelich.de:857552$$pVDB
000857552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161422$$aForschungszentrum Jülich$$b0$$kFZJ
000857552 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161422$$aRWTH Aachen$$b0$$kRWTH
000857552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ
000857552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165985$$aForschungszentrum Jülich$$b2$$kFZJ
000857552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b3$$kFZJ
000857552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b4$$kFZJ
000857552 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b4$$kRWTH
000857552 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857552 9141_ $$y2018
000857552 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000857552 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857552 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2017
000857552 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857552 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857552 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857552 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857552 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857552 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857552 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857552 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857552 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857552 920__ $$lyes
000857552 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000857552 980__ $$ajournal
000857552 980__ $$aVDB
000857552 980__ $$aI:(DE-Juel1)IEK-9-20110218
000857552 980__ $$aUNRESTRICTED
000857552 981__ $$aI:(DE-Juel1)IET-1-20110218