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a b s t r a c t

We introduce a software, Torricelli, for the analysis of normal incidence x-ray standing wave data.
In particular, given the experimental x-ray reflectivity and photoelectron yield of a data set (photon
energy scan), Torricelli provides the corresponding structural parameters. The algorithm and equations
on which Torricelli is based are explained here in detail. In particular, the model of the experimental
reflectivity takes into account the theoretical reflectivity of the double crystal monochromator as well as
the sample crystal, and aGaussian broadening to account formosaicity andphoton energy spread. If statis-
tical errors are provided together with the photoelectron yield data, these are propagated to produce the
statistical errors of the structural parameters. For a more accurate analysis, angle-dependent correction
parameters specific to the photoemission process, also beyond the dipole approximation, can be taken
into account, especially in the case of non-perfect normal incidence. The obtained structural parameters
can be compared, averaged, and displayed in an Argand diagram, along with statistical error bars.
Program summary
Program Title: Torricelli
Program Files doi: http://dx.doi.org/10.17632/xhwn8cygjp.1
Licensing provisions: GNU General Public License 3 (GPL)
Programming language: Python 2.7
External routines/libraries: Numpy, Scipy, Lmfit, Pyqtgraph, PyQt
Nature of problem: Extraction of adsorption distances to Bragg planes from reflectivity and photoelectron
yield data in NIXSW experiments.
Solution method: Fast, accurate, easy-to-use and well documented python program including a graphical
user interface that, given reflectivity and photoelectron yield as input, provides the corresponding atomic
structural parameters.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The normal incidence x-ray standing wave (NIXSW) technique
allows the determination of atomic spatial distributions at sin-
gle crystal surfaces, with sub-Å accuracy and chemical sensitivity
[1–4]. Themethod is based on the analysis of photoelectron, Auger
electron or fluorescence yields, excited by an x-ray standing wave
field resulting from the superposition of an x-ray beam and its
Bragg reflection. The data analysis involves multiple steps and
greatly profits fromauser-friendly andwell-documented program
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Germany.

that automates the analysis, starting from data import, via the
fitting itself, and endingwith the display and the organized storage
of the results.

Several programs that simulate theoretical reflectivity and yield
curves and fit the experimental data already exist. Most of them
can treat photon energy scans in the case of perfect normal in-
cidence on a few single crystal structures, each program having
different salient features. Darewas written in Fortran by J. Zegen-
hagen and M. Bedzyk in 1986 and after several upgrades became
Swam in 2009, aMatlabmacro [5]. Its special feature is the analysis
of both angular and photon energy scan data. It can also account for
the effects of a detuned double crystalmonochromator, and the ab-
sorption effect of photoelectrons stemming from buried elements.
It is based on a dialog-box interface.XSWfit is an Igor-Promacro by
R.G. Jones based on the formalism developed by D.P. Woodruff in
Fortran, but its development has been abandoned [6,7]. Xswaves,
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an Origin-based routine by O. Bauer [8,9], has been developed
between 2009 and 2013 and tested in parallel with the early
versions of Torricelli. It is based on a dialog-box interface and
differs from Torricellimostly by the user interface, the treatment
of photoemission correction parameters to the yield and the data
storage and display in an Argand diagram. A python library, called
pyXSW written by J. Roy, has been developed between 2010 and
2012 [10,11]. It has the characteristic that it can fit and simulate
XSW yield curves using Crystallographic Information Framework
(CIF) files from the Crystallography Open Database [12,13], aiming
for the measurement of zeolite crystals that can contain large
numbers of atoms in the unit cell.

In this publication, we present the Torricelli software. It is
open-source, python-based, provides a high-end and easy-to-use
graphical user interface, and is operating system-independent. Be-
sides importing experimental data, simulating theoretical curves
to fit the data, and propagating statistical errors, it automati-
cally accesses and interpolates the necessary databases of Debye–
Waller parameters and atomic scattering factors. Also, Torricelli
has a large crystal structure database that can be easily extended.
It can also treat angle-dependent photoelectron yield data and
apply the appropriate correction parameters to account for non-
dipolar effects of the photoemission process also if perfect normal
incidence is not realized. Last but not least, the fit results and all
important parameters are systematically saved and plotted in an
Argand diagram where the average values of several similar data
points can be computed together with corresponding statistical
error bars. Torricelli has been tested and used by numerous
users and used for many publications already (see for instance
Ref. [14–30]). An early version of Torricelli is documented in
Ref. [31].

The NIXSW technique can be based on either photoelectron
spectroscopy, fluorescence, or Auger electron spectroscopy to
probe the sample with elemental specificity. In the following
(Section 2), we describe the algorithm Torricelli uses to analyze
NIXSW photoemission data. Sections 2.1.2, 2.2, 2.3, 2.5, and 2.7 are
fully general, while Sections 2.1.1, 2.1.3, 2.1.4, 2.1.5, 2.4, and 2.6 are
specific to the case of photoelectron spectroscopy. An overview of
the structure of the code is given in Section 3.

2. Data analysis

2.1. Theoretical framework

2.1.1. Photoemission from an x-ray photon field
In Torricelli, we treat the interaction of an atomic systemwith

electromagnetic radiation in a semi-classical way. That means that
the motion of the particle is quantized, but the electromagnetic
field is considered classically. In the photoemission process an
electron in the initial state i with wave function Ψi is excited to
the final state f with wave function Ψf by a photon field having
the vector potential A. Using SI units, the classical non-relativistic
Hamiltonian of an electron in a general electromagnetic field is
(Chap. 8 in Ref. [32])

H =
(p + eA)2

2me
− eφs, (1)

where (p+eA) is the kineticmomentumof an electronwith charge
−e and massme, and p = −ih̄∇. Eq. (1) is equivalent to

H =
1

2me
(p2

+ e2A2
+ ep · A + eA · p) − eφs. (2)

Operating with (ep · A + eA · p) on a wave function Ψ we get

(ep · A+eA · p)Ψ = ep · AΨ + eA · pΨ (3)
= −ieh̄[∇ · AΨ + A · ∇Ψ ] (4)
= −ieh̄[(∇ · A)Ψ + A · (∇Ψ ) + A · ∇Ψ ] (5)
= −ieh̄[(∇ · A)Ψ + 2A · ∇Ψ ]. (6)

Choosing φs = 0 and using the Coulomb gauge (∇ · A = 0) we
obtain

H =
1

2me
(p2

+ e2A2
+ 2eA · p). (7)

Neglecting two-photon processes (A2
= 0), the interaction Hamil-

tonian Hint (which is defined by H =
p2
2me

+ Hint) becomes

Hint =
e
me

A · p. (8)

Using Hint in first-order perturbation theory, it transpires from
Fermi’s Golden Rule that the transition probability per unit time
between Ψi and Ψf is (Chap. 1 in Ref. [33])

wf,i =
2π
h̄

⏐⏐⟨Ψf|Hint|Ψi⟩
⏐⏐2δ(Ei − Ef − hν), (9)

where the δ function ensures energy conservation. Up to this point,
we have not specified the photon field. Now we assume a plane
wave monochromatic vector potential3

A = eAe2π i(νt−K·r), (10)

where e is the polarization unit vector, A is the amplitude (a
complex value), r the spatial position in the crystal and hν the
photon energy. e is perpendicular to the photon wave vector K. In
Section 2.1.3, we will extend this to the superposition of a plane
wave with its Bragg reflection. The differential cross section for
absorption of a photon from a single plane wave monochromatic
radiation field and the ejection of an electron into a continuum of
unbound states is (Chap. 10 in Ref. [33])
dσf,i
dΩ

(hν;φ) ∝
⏐⏐Mf,i(hν;φ)

⏐⏐2, (11)

with

Mf,i(hν;φ) ≡ ⟨Ψf|Hint|Ψi⟩ (12)

=
e
me

Ae2π iνt⟨Ψf|e−2π iK·re · p|Ψi⟩, (13)

where φ is the angle between K and the photoelectron ejection
direction. We now expand the exponential term

e−2π iK·r
= 1 − 2π iK · r + 2π2(K · r)2 − · · · . (14)

The first term (E1 = 1) is the electric dipole, the second (E2 =

−2π iK · r) the electric quadrupole and the third (M1 = 2π2

(K · r)2) the magnetic dipole term. If we restrict ourselves to E1
and E2, that is within the dipole–quadrupole approximation, we can
write [34]

MD+Q
f,i (hν;φ) = MD

f,i(hν;φ) + MQ
f,i(hν;φ), (15)

with

MD
f,i(hν;φ) =

e
me

Ae2π iνt⟨Ψf|e · p|Ψi⟩ (16)

and

MQ
f,i(hν;φ) =

−2π ie
me

Ae2π iνt⟨Ψf|(K · r)(e · p)|Ψi⟩. (17)

Neglecting |MQ
f,i(hν;φ)|

2 in Eq. (11), it follows that

dσD+Q
f,i

dΩ
(hν;φ) ∝ |MD

f,i(hν;φ)|
2

+ 2Re
[
MD

f,i
∗
(hν;φ)MQ

f,i(hν;φ)
]
. (18)

3 Assuming φs = 0, the vector potential is related to the electric field by

E = −
∂A
∂t
.
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It can be shown that for an x-ray beamwith linear polarization, the
differential cross section can be parametrized as [34]

dσD+Q
f,i

dΩ
(hν;φ) ∝

[
1 +

β

2

(
3(e · ne)2 − 1

)
+ (s · ne)

{
δ + γ (e · ne)2

}]
, (19)

where ne = ke/|ke| is the unit vector in the direction of the
ejected electron and s = K/|K| is the unit vector in the direction of
photon propagation. The (s · ne) term is caused by the quadrupole
contribution and introduces a forward–backward asymmetry with
respect to the photon direction s. The values of the parameters β , δ
and γ depend on the photoelectron energy, the atomic species and
the sub-shell. β is the dipole asymmetry parameter, and δ and γ
account for non-dipolar effects. In the case of an initial s-state one
can approximate β = 2 and δ = 0 which yields [34]

dσD+Q
f,i=s

dΩ
(hν;φ) ∝ (e · ne)2

[
3 + γ (s · ne)

]
. (20)

In that case, only γ determines the non-dipolar effects. If γ > 0
(γ < 0) the photoelectron distribution is shifted forward (back-
ward) with respect to the x-ray direction.

For the dipole approximation (γ = 0) and an initial s-state,
Eq. (19) further simplifies to

dσD
f,i=s

dΩ
(hν;φ) ∝ 3(e · ne)2. (21)

In the dipole approximation, one retains only the E1 term of the
expansion Eq. (14) (e−2π iX·re ≈ 1). In otherwords, one assumes that
the spatial extension of orbitals subject to photoemission is smaller
than the wavelength of the x-ray standing wave field, which is not
true for typical photon energies used in NIXSW (of the order of few
keV).

2.1.2. The x-ray standing wave field
Data analysis in Torricelli is based on dynamical x-ray diffrac-

tion theory. This theory takes into account multiple scattering
events and absorption of x-rays in the crystal. It has been reviewed
in detail by Batterman andCole in Ref. [35]. A recent review specific
to x-ray standing waves can be found in Ref. [36]. In a nutshell,
one has to solve Maxwell’s equations in a mediumwith a complex
dielectric constant (to account for absorption in the medium),
assuming plane wave solutions for the vector potentials of the
incident beam (assuming constant intensity)

A0(hν; r, t) = e0A0e2π i(νt−K0·r) (22)

and the reflected beam

AH(hν; r, t) = eHAH(hν)e2π i(νt−KH·r) (23)

that are consistent with Bragg’s law

KH = K0 + H, (24)

where H is a reciprocal lattice vector of the crystal, e0 and eH are
the unit vectors representing the polarization directions, hν is the
photon energy and r the spatial position in the crystal. Note that
because of absorption in the crystal, the wave vectors K0 and KH of
the incident and Bragg-reflected x-rays are complex.Moreover, the
amplitudesA0 andAH(hν) are complex aswell.We further note that
all the following formulae are based on the assumption that only
one reflection, i.e., oneH, is active. The two vector potentials for the
given Bragg reflection are related by the ideal sample reflectivity
RS(hν) and phaseΦS(hν)
AH(hν)

A0
=

|AH(hν)|
|A0|

eiΦS(hν) =

√
RS(hν)eiΦS(hν). (25)

This is consistent with RS(hν) = |AH(hν)|2/|A0|
2, where both

RS(hν) and
√
RS(hν) are real numbers [34]. The superposition of

the coherently interfering incident and Bragg-reflected waves in
the crystal generates an x-ray standing wave field in the overlap
region with vector potential

A(hν; r, t) = A0(hν; r, t) + AH(hν; r, t) (26)

= A0e2π iνt
[
e0e−2π iK0·r

+ eH
√
RS(hν)eiΦS(hν)e−2π iKH·r

]
= A0e2π i(νt−K0·r)

[
e0 + eH

√
RS(hν)eiΦS(hν)e−2π iH·r

]
. (27)

The normalized intensity is [4,37]

IXSW (hν; r, ξ) ≡
|A0(hν; r, t) + AH(hν; r, t)|2

|A0|
2 (28)

=1 + RS(hν) (29)

+ 2Px-ray(ξ )
√
RS(hν) cos (ΦS(hν) − 2πH · r) ,

or, with the spacing between (hkl) Bragg planes dhkl = |H|
−1,

IXSW (hν; z, ξ) = 1 + RS (hν) (30)

+ 2Px-ray(ξ )
√
RS (hν) cos

(
ΦS (hν)−

2πz
dhkl

)
,

where z is a real-space position along the direction of H and
Px-ray(ξ ) = eH · e0 is the polarization factor, i.e.,

Px-ray(ξ ) =

{
cos 2θ = − cos 2ξ for π-polarization
1 for σ -polarization. (31)

For σ -polarization, e0 = eH are perpendicular to the plane of
incidence (defined by K0 and KH), while for π-polarization (as
depicted in Fig. 1), e0 and eH are not parallel but lie in the plane
of incidence.

By tuning the photon energy through the Bragg condition, the
phase ΦS(hν) is changing by π and the x-ray standing wave field
shifts by dhkl/2. Specifically, at the onset of the reflectivity curve
(hν < hνB), the nodal planes of the standing wave lie on the
scatterer planes (for elemental substrates), while at the opposite
end (hν > hνB) the nodal planes lie midway between the scatterer
planes [3].

2.1.3. Photoelectron yield from an x-ray standing wave field
Wenowextend the considerations of Section 2.1.1 to the case of

the superposition of an x-ray photon field with its Bragg reflection,
and determine the corresponding photoelectron yield. An x-ray
standing wave field is the vector potential A of the interference
field between the incident A0(hν) and reflected AH(hν) beams [2]
as described by Eq. (27). We decompose the position r of the
photoemitter in the crystal as

r = ra + re, (32)

where ra is the fixed position of the center of the atom and re the
position of the absorbing electron relative to ra. Using Eq. (32) in
Eq. (27), we have

A(hν; re, t, ξ ) = A0e2π i(νt−K0·ra−K0·re) (33)

×

[
e0 + eH

√
RS(hν)eiΦS(hν)e−2π iH·rae−2π iH·re

]
.

The matrix element of the photoelectron emission in the x-ray
standing wave field is the sum of matrix elements for each photon
field A0(hν; re, t) and AH(hν; re, t). We restrict ourselves here to
photoelectron emission in the plane of incidence (plane formed the
K0 and KH vectors) only, see Fig. 1.
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Fig. 1. Sketch of the plane of incidence defining all vectors and angles used in this
article, and assuming a π-polarization (e0 and eH are the unit vectors representing
the polarization directions). For σ -polarization, e0 = eH would be out of the plane
of incidence. A positive ξ value (as depicted here) means that K0 points towards
the analyzer. θ is the angle between in incident (and reflected) beam and the Bragg
planes and ξ is the deviation fromperfect normal incidence (θ+ξ = 90◦).α0 (αH) is
the angle between the sample surface and the incident (reflected) x-ray beam, and
we have ζ +α0 + ξ = 90◦ . The substrate surface is not parallel to the Bragg planes.
αH > α0 (as depicted here) means that the surface normal points towards the
electron analyzer. φ is the angle between the incident x-ray beam and the detection
direction of the photoelectrons.

Inserting Eq. (33) into (12), we obtain

Mf,i(hν;φ, ξ ) =
e
me

A0e2π i(νt−K0·ra)
[
Mf,i(s0) (34)

+

√
RS(hν)eiΦS(hν)e−2π iH·raMf,i(sH)

]
,

where s0 = K0/|K0|, sH = KH/|KH| and

Mf,i(s0) = ⟨Ψf|e−2π i(K0·re)e0 · p|Ψi⟩ (35)

Mf,i(sH) = ⟨Ψf|e−2π i(KH·re)eH · p|Ψi⟩. (36)

Inserting Eq. (34) in Eq. (11) results in
dσf,i
dΩ

(hν;φ, ξ ) ∝ S00 + SHHRS(hν) (37)

+ 2
√
RS(hν)Re

(
S0HeiΦS(hν)−2π iH·ra

)
,

where

S00 = |Mf,i(s0)|2 (38)

SHH = |Mf,i(sH)|2 (39)
S0H = M∗

f,i(s0)Mf,i(sH). (40)

We define the photoelectron yield in a given solid angle Ω(φ)
around the emission direction φ with respect to the incident pho-
ton beam (see Fig. 1) as

Yf,i (hν;φ, ξ) ≡

∫
Ω(φ)

dσf,i
dΩ ′

(hν;φ, ξ )dΩ ′ (41)

∝ 1 + SRRS(hν) + 2|SI|
√
RS(hν) cos

(
ΦS(hν) −

2πz
dhkl

+ ψ

)
,

with

SR =
SHH

S00
(42)

SI = |SI|eiψ =
S0H
S00
. (43)

Note that the SR and SI parameters describe the deviation of the
photoelectron yield from the x-ray standing wave intensity in Eq.

(30). SR and |SI| and ψ depend on φ and ξ . Eqs. (37) to (43) are
completely general, for the case of photoemission induced by a
standing wave field with one active Bragg reflection. In Section
11.4 of Ref. [34] Vartanyants and Zegenhagen provide general
equations for the matrix elements of Eqs. (38)–(40), for any sub-
shell, any geometry and without any approximation. In this article
(Section 2.6.1), we restrict ourselves to the dipole and the dipole–
quadrupole approximations, photoelectron emission in the plane
of incidence, and initial s-state, because they are the cases that are
most frequently encountered in NIXSW data analysis and that are
covered in Torricelli.

Note that the case of an initial s-state and perfect normal in-
cidence (ξ = 0) in the dipole approximation (e−2π iX·re ≈ 1 in
Eq. (35) and (36)) is particularly interesting. It can be shown that
SDR;f,i=s = SDI;f,i=s = 1 and ψD

f,i=s = 0 in Eq. (41) (see Section 2.6.1)
and it follows from Eq. (30) that

YD
f,i=s (hν;φ, ξ = 0) ∝ IXSW(z, hν), (44)

because Px-ray(ξ = 0) = 1 in IXSW(z, hν) in both x-ray polarization
cases. This means that, for an initial s-state and perfect normal
incidence, the photoelectron yield of an atom at the position z,
in the dipole approximation, is proportional to the corresponding
standing wave intensity IXSW (z, hν) [2]. Therefore the analysis of
the yield line shape is used to determine the distance z mod dhkl
between this atom and the nearest Bragg plane underneath. This
is the essence of the NIXSW technique. However, usually ξ ̸= 0
in experiments and π-polarization is often used. This means that
Eq. (30) cannot be used to fit the photoelectron yield even when
neglecting the quadrupole contribution, but Eq. (41) has to be used
instead.

2.1.4. Coherent fraction and position
In actual experiments, atoms of the same species may occupy

different sites along z in the direction of H (see Fig. 1). To account
for this, we assume a spatial atomic distribution function g(z), such
that

∫ dhkl
0 g(z)dz = 1. Leaving out the dependency on φ and ξ for

simplicity, Eq. (41) becomes

Yf,i (hν; g) ∝ 1 + SRRS (hν) (45)

+ 2|SI|
√
RS (hν)

∫ dhkl

0
g(z) cos

(
ΦS (hν)−

2πz
dhkl

+ ψ

)
dz.

By introducing the coherent fraction Fc (0 ≤ Fc ≤ 1), which can be
seen as an effective Debye–Waller factor4 that accounts for static
and dynamic disorder of the atoms [4], and the coherent position Pc
(0 < Pc ≤ 1), we finally obtain

Yf,i (hν; Pc, Fc) ∝ 1 + SRRS (hν) (46)

+ 2|SI|Fc
√
RS (hν) cos

(
ΦS (hν)− 2πPc + ψ

)
.

Pc and Fc characterize the spatial distribution of a given atomic
species in the H direction. Note that the coherent position Pc
corresponds to the average height only in the case of single-site ad-
sorption and spatial atomic distributions smaller than dhkl. Ref. [19]
provides a detailed explanation of the meaning of Pc and Fc.

2.1.5. Analysis steps in Torricelli
If RS(hν) and ΦS(hν) of the sample crystal were known from

the experiment, fitting the experimental photoelectron yield pro-
file Y exp

i (hν;φ) using Eq. (46) would provide the two structural
parameters (P i

c, F
i
c) for this component i. However, the measured

Rexp(hν) is not the sample reflectivity but a cross-correlation of
the reflectivities of the sample and monochromator crystals (see

4 Commonly, the Debye–Waller factor describes the vibrations of substrate
atoms that affect the standing wave field itself, see Section 2.2.2.
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Section 2.5). Of course, one may use the experimental Rexp(hν)
in Eq. (46), but then one cannot use the theoretically calculated
Φtheo

S (hν), as this would be inconsistent. On the other hand, an
experimental Φexp(hν) that would be consistent with Rexp(hν) is
not available. Torricelli’s solution of this problem is as follows.
The experimental Rexp(hν) is modeled as a cross-correlation of the
ideal reflectivity of the double crystal monochromator and the
ideal sample reflectivity, subsequently broadened to take into ac-
count crystal imperfections. This accounts for all aspects related to
the experimental setup and the sample. The same broadening and
cross-correlation are then applied to the theoretical yield curve,
the latter calculated with the ideal Rtheo

S (hν) and Φtheo
S (hν) of the

sample. Thus the theoretical reflectivities Rtheo
M (hν) and Rtheo

S (hν) of
the ideal monochromator and the ideal sample have to be calcu-
lated as well as the theoretical phase of the ideal sampleΦtheo

S (hν).
Torricelliperforms the following steps to analyzeNIXSWdata:

1. Compute the structural factors FH of the monochromator
and the sample, both of them ideal crystals (Section 2.2).

2. Compute the theoretical reflectivity and phase of the
monochromator (Rtheo

M (hν), Φtheo
M (hν)) and the sample

(Rtheo
S (hν), Φtheo

S (hν)) assuming ideal crystals (Section 2.3).
Φtheo

M (hν) is actually not used.
3. Choose the set S of yield components {i} to be analyzed

as well as the corresponding emission angle φ. Import and
normalize the chosen data (Section 2.4).

4. Set up the reflectivity model Rmodel(hν) for the actual
monochromator/sample system (including, e.g., mosaic
spread) and fit Rexp(hν) (Section 2.5).

5. Set up the photoelectron yield model Ymodel
S (hν) (in either

the dipole or the dipole–quadrupole approximation and for
an initial s-state) and fit Y exp

S (hν;φ) (Section 2.6).
6. Store, organize and visualize (PS

c , FS
c ) data points (Sec-

tion 2.7).

2.2. Structure factors

Torricelli calculates the structure factors for anyhkl-reflection,
provided the crystal structure and lattice parameters are known.
A substantial database of lattice parameters compiled from the
literature [38–40] is already included in Torricelli. Modifying the
database, adding new structures (lattice parameters and atomic
positions in the unit cell) can easily be done.

Torricelli determines the structure factors FH in the following
way. If one assumes atoms to behave as rigid spheres with a given
charge density, FH can be written as [35,41]

FH =

∑
n

fne−Mne2π iH·rn , (47)

where fn is the corrected atomic scattering factor of the nth atom in
the unit cell, e−Mn is the corresponding Debye–Waller factor, rn =

xna1 + yna2 + zna3 is the position vector and H = hb1 + kb2 + lb3
is the scattering vector [35]. a1, a2 and a3 are the unit cell vectors,
b1, b2, and b3 are the reciprocal lattice unit vectors, and h, k and l
are the Miller indices. The structure factor thus becomes

FH =

∑
n

fne−Mne2π i(hxn+kyn+lzn). (48)

This expression reveals the dependence of the structure factor
on the positions of atoms inside the unit cell and on the specific
hkl-reflection. In the following we will discuss in detail how Tor-
ricelli calculates the different quantities in Eq. (48).

2.2.1. Corrected atomic scattering factor fn
The corrected atomic scattering factor fn describes the interac-

tion of x-rays with atoms (e.g., photo-absorption and scattering).

It is defined as the factor by which the scattering amplitude by
one single free electron must be multiplied to obtain the total
amplitude coherently scattered by the particular atom [42], and it
can be expressed as

fn = f0(θ, λ, Z) +∆f ′(θ, λ, Z) + i∆f ′′(θ, λ, Z). (49)

Z is the atomic number, λ the wavelength of the x-rays, 2θ the an-
gle between the incident and scatteredwave vectors and f0(θ, λ, Z)
is the atomic scattering factor5 [44]. f0 (θ, λ, Z) is tabulated in
Ref. [45] as a function of sin θ/λ. We assume that sin θ/λ is
constant and equal to sin θB/λB = 1/2dhkl within the range of
photon energies scanned around the Bragg energy. ∆f ′(θB, λB, Z)
and ∆f ′′(θB, λB, Z) are the real and imaginary parts of the disper-
sion correction (Hönl correction), i.e., the correction of the atomic
scattering factor for x-ray energies close to absorption thresholds.
In particular, ∆f ′′(θB, λB, Z) represents a small shift in phase of
the scattered radiation. Since the dependence of ∆f ′(θB, λB, Z)
and ∆f ′′(θB, λB, Z) on the angle θB is much smaller than that of
f0(θB, λB, Z), the two correction terms are considered to be angle-
independent [42,43]. We therefore introduce

f1 (0, λB, Z) ≡ Z +∆f ′(0, λB, Z) (50)
and f2 (0, λB, Z) ≡ ∆f ′′(0, λB, Z). (51)

f1 (0, λB, Z) and f2 (0, λB, Z) are tabulated as a function of the
photon energy hν in Ref. [42,46]. Thus Torricelli uses the equation

fn ≃ f0 (θB, λB, Z)− Z + f1 (0, λB, Z)+ if2 (0, λB, Z) , (52)

for the corrected atomic factors. The tabulated values of f0 (θB,
λB, Z), f1 (0, λB, Z) and f2 (0, λB, Z), fully included in the Torricelli
database, are linearly interpolated to determine the ones corre-
sponding to the specific Bragg energy hνB and Bragg angle θB.

As explained in Section 2.3, the structure factors, and thus
the atomic scattering factors, must be calculated for three dif-
ferent scattering vectors, 0 = (0, 0, 0), H = (h, k, l) and H̄ =

(−h,−k,−l). In particular, for forward scattering θB = 0, hence
sin(θB)/λB = 0 and f0 (0, λB, Z) = Z . Eq. (52) then becomes

fn
⏐⏐
0 ≃ f1 (0, λB, Z)+ if2 (0, λB, Z) . (53)

In case of reflections H and H̄, sin θB/λB is the same and non-
vanishing, therefore the corrected atomic scattering factor is

fn
⏐⏐
H = fn

⏐⏐
H̄ ≃ f0 (θB, λB, Z)− Z + f1 (0, λB, Z)

+ if2 (0, λB, Z) . (54)

2.2.2. Debye–Waller factor
Torricelli provides severalmethods for calculating the Debye–

Waller factor e−Mn of the nth atom in the unit cell. For a Bragg
reflection, the quantityMn is given by [41,47]

Mn =
1
2
(2πH)2

⟨
u2
n

⟩
=

2π2

d2hkl

⟨
u2
n

⟩
, (55)

where
⟨
u2
n

⟩
denotes the thermal average of the squared displace-

ment of the nth atom from its equilibrium position. We assume
that the Debye–Waller factor is constant within the range of pho-
ton energies scanned around the Bragg energy. Using Bragg’s law
2dhkl sin θB = λB we obtain

Mn =
8π2sin2θB

λ2B

⟨
u2
n

⟩
. (56)

5 The atomic scattering factor f0(θ, λ, Z) is based on the assumption that (a) the
x-ray wavelength is much smaller than any of the adsorption wavelengths of the
atom, and (b) the electron distribution in the atom has spherical symmetry [43].
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Be defining

Bn ≡ 8π2 ⟨u2
n

⟩
(57)

we obtain

e−Mn = e−Bn(sin θB/λB)2 . (58)

Note that for forward scattering sin θB/λB = 0. Variousmethods to
calculate the Debye–Waller factor are included in Torricelli. They
can be chosen by the user.

• Warren – According to Eq. 11.77 of Warren [43], Bn can be
approximated as

Bn =
12h2T
mkT 2

M

[
L (x)+

x
4

]
(59)

for cubic elemental crystals, where h is Planck’s constant,
m is the atomic mass of the atomic species expressed in
g mol−1, k is the Boltzmann constant, and T is the crys-
tal temperature. TM is an average characteristic temper-
ature that can be approximated by the tabulated Debye
temperature6 TD. L (x) is a function that can be expanded
as

L (x)+
x
4

= 1 +
x2

36
−

x4

3600
+ . . . , (60)

where x = TM/T . The values for TD and m are taken from
Ref. [48].

• Sears and Shelley [48] – This model is based on phonon
density-of-states curves obtained from inelastic neutron
scattering experiments and is valid for 43 elemental crystals
with fcc, bcc, hcp, or diamond structure. The advantage of
thismodel is that it allows theDebye–Waller factor to be de-
termined with a high level of accuracy at any temperature.
The parameter Bn is given by

Bn =
39.904
mνm

J (y) , (61)

wherem is the atomic mass in g mol−1, νm is the maximum
phonon frequency in THz, J (y) is a function of y = T/TD (TD
is the Debye temperature) and is expressed as

J (y) =

⎧⎪⎨⎪⎩
f−1 +

π2

3
αy2 y < 0.2

2f−2y +
1
6y

−
f2

360y3
y ≥ 0.2.

(62)

The parametersm, νm, TD, α, f−1, f−2 and f2 are tabulated and
described in detail in Ref. [48].

• Gao and Peng [49] – This presents a parameterization of
the temperature dependence of the Debye–Waller factor
for 68 elemental crystals on the basis of available phonon
densities of states for 46 elements, and an estimation using
the Debye approximation for the phonon densities of states
for the remaining 22 elements. This study also provides the
Debye–Waller factor for 17 compounds with the Zincblende
structure. This approach is known to be more accurate than
the expansion provided by Sears and Shelley [48]. In this
approximation

Bn(T ) = a0 + a1T + a2T 2
+ a3T 3

+ a4T 4, (63)

with all parameters ai (with i = 1, . . . , 4) tabulated in
Ref. [49].

• Zywietz [50] – For SiC, the mean-square displacement of
carbon and silicon atoms is used to calculate the Debye–
Waller factor from Eq. (57). Theoretical values for ⟨u2

n⟩ are
extracted from Fig. 7 of Ref. [50].

6 This approximation does not hold for germanium. See references in Ref. [43].

2.3. Theoretical reflectivity and phase

Since the reflectivity and phase of the sample crystal are
both not directly accessible experimentally (as explained in
Section 2.1.5), the theoretical reflectivity of the monochromator
(Rtheo

M (hν)) and the reflectivity and phase of the sample crystal
(Rtheo

S (hν),Φtheo
S (hν)) need to be calculated. As explained in the fol-

lowing (see Sections 2.5 and 2.6), this allows to formulate accurate
fitting functions for Rexp(hν) and Y exp

S (hν;φ).
We now summarize the equations describing the reflectivity

andphase as derived from the theory of dynamical x-ray diffraction
by perfect crystals. From Eq. 24 and 31 in Ref. [35] in conjunction
with E = −

∂A
∂t we obtain

AH(hν)
A0

= (64)

−
Px-ray(ξ )
|Px-ray(ξ )|

√
|b|

√
FH
FH̄

[
η(hν) ±

√
η2(hν) +

b
|b|

]
.

Using Eq. (25) and making the ± dependence explicit in the left
part of the equation, we obtain√
R±(hν)eiΦ±(hν)

= (65)

−
Px-ray(ξ )⏐⏐Px-ray(ξ )⏐⏐√|b|

√
FH
FH̄

[
η(hν) ±

√
η2(hν) +

b
|b|

]
.

Note that the equations used in Torricelli and given above are
completely general. In particular,wehave explicitly kept the asym-
metry parameter b and the polarization factor Px-ray(ξ ) in the
equations. b is defined as

b = − sinα0/sinαH, (66)

whereα0 andαH are the angles of the incident and reflected beams,
respectively, with the sample surface, see Fig. 1. In the literature b
is often set to +1 (Laue case) or −1 (Bragg case with Bragg planes
parallel to the surface, α0 = αH). Similarly, Px-ray(ξ ) is often set to 1
for σ -polarization and −1 for π-polarization. Note, however, that
for π-polarization the correct value is Px-ray(ξ ) = − cos 2ξ [35],
and therefore for NIXSW experiments where ξ > 0◦ (i.e., when
normal incidence is not precisely fulfilled, which is usually the
case, see Fig. 1), Px-ray(ξ ) > −1. We find that using the correct
value of Px-ray(ξ ) improves the fit quality of the reflectivity curve
substantially. Additionally, using the correct b value is important to
accurately take into account photoemission correction parameters
to the yield (see Section 2.6.1).

F0, FH and FH̄ are the structure factors for 0 = (0, 0, 0), H =

(h, k, l) and H̄ = (−h,−k,−l) reflections. The0,H and H̄ reflections
represent the forward scattering of the incident beam (0 = KH=0−

K0), the Bragg reflection of the incident beam (H = KH − K0) and
the Bragg reflection of the reflected beam back into the forward di-
rection (H̄ = K0 −KH), respectively. These are the three scattering
phenomena simultaneously present inside a nearly perfect crystal,
for which the dynamical theory must be employed.

In Eqs. (64) and (65), the deviation parameter η for θ scans,
related to the deviation∆θ from Bragg incidence and to the angle
between the surface and the Bragg planes (see Eq. (66)), is given by
(see Eq. 32 in Ref. [35])

η(θ ) =
b∆θ sin(2θB) + Γ F0(1 − b)/2

|Px-ray(ξ )|Γ
√

|b|FHFH̄
(67)

which assumes a constant photon energy hνB and a deviation ∆θ
from the corresponding Bragg angle θB. Γ is defined as [35]

Γ =
reλ2B
πV

, (68)
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where re is the classical electron radius [51], λB = c/νB the
x-ray wavelength at the Bragg condition and V is the volume of
the crystal unit cell. To account for photon energy scans in Eq. (67),
we need to find the function η(hν) instead of η(θ ). We start with
the derivative d(hνB)/dθB of Bragg’s law (2dhkl sin θB = nλB =

nhc/hνB) and divide by hνB. Replacing d(hνB)/dθB by ∆(hνB)/∆θB
yields

− 2
∆hνB
hνB

sin2θB = ∆θB sin(2θB). (69)

This equation shows how one has to adjust the angle θB in order
to keep the Bragg condition when the photon energy is changed
by ∆hνB. However, in an NIXSW experiment θB is fixed while the
photon energy is scanned through the Bragg condition. During this
energy scan∆hν, the actual deviation∆θ from the Bragg angle θB
is −∆θB. As a result, we have

2
∆hν
hνB

sin2θB = ∆θ sin(2θB) (70)

and Eq. (67) becomes

η(hν) =
2b (∆hν/hνB) sin2θB + Γ F0(1 − b)/2⏐⏐Px-ray(ξ )⏐⏐Γ√|b| FHFH̄

. (71)

This is the expression that Torricelli employs to determine R±(hν)
andΦ±(hν) from Eq. (65). It corresponds to Eq. 2.4 in Ref. [3] if one
sets b to −1.

From Eq. (65) we find [2]

R±(hν) = |b|

⏐⏐⏐⏐⏐
√

FH
FH̄

[
η(hν) ±

√
η2(hν) − 1

]⏐⏐⏐⏐⏐
2

(72)

and

Φ±(hν) = arctan
[
Im(AH(hν)/A0)±

Re(AH(hν)/A0)±

]
. (73)

In Eq. (72), we used the fact that for general Bragg diffraction from
planes not parallel to the crystal surface b < 0, therefore b/|b| =

−1. In practice, to calculate R(hν) and Φ(hν), the ambiguity of
the two possible solutions (R+(hν) and Φ+(hν)) or (R−(hν) and
Φ−(hν)) has to be solved for each hν value. The reflectivity and
phase is equal to the + or the − branch depending on which one
fulfills the condition R±(hν) ∈ [0, 1]. Additionally, we have for
σ -polarization [2]

Φ (hν) =

{
Φ± (hν) if Re (AH(hν)/A0) ≥ 0
Φ± (hν)+ π if Re (AH(hν)/A0) < 0, (74)

and for π-polarization

Φ (hν) =

{
Φ± (hν) if Re (AH(hν)/A0) ≤ 0
Φ± (hν)+ π if Re (AH(hν)/A0) > 0. (75)

The difference between Eqs. (74) and (75) stems from the sign of
Px-ray(ξ ) in Eq. (64).

2.4. Experimental input data

The input files of Torricelli contain Rexp (hν), Y exp
i (hν;φ), the

statistical errors for each experimental yield point σY exp
i
(hν;φ),

the intensity of the incident x-ray beam Iexp0 (hν) (all in arbitrary
units). These data are measured at different photon energies hν
around the nominal Bragg energy hνB of a given Bragg reflection
H. Torricelli is only applicable in the case of photoemission in the
plane of incidence. Y exp

i (hν;φ) is acquired in a fixed solid angle
Ω(φ) around a direction that makes an angle φ between the inci-
dent x-ray beam and the photoelectron ejection direction. During
the acquisition of NIXSW data, the intensity of the incident x-ray

beam Iexp0 (hν) may vary. It is therefore important to normalize
Rexp (hν), Y exp

i (hν;φ) and σY exp
i
(hν;φ) by Iexp0 (hν). The photoelec-

tron yields Y exp
i (hν;φ) and statistical errors σY exp

i
(hν;φ) resulting

from the fit of photoemission spectra can be obtained with any
fitting routine. In particular, we often employ CasaXPS [52] for the
accurate determination of σY exp

i
(hν;φ) as described in detail in

Ref. [14]. In the general case, the photoelectron yield file contains
several yield curves Y exp

i (hν;φ) (with 1 ≤ i ≤ N). These can be
individual components of one or several different core levels. These
components can be analyzed individually, or the sum of a set S of
them

Y exp
S (hν;φ) =

∑
i∈S

Y exp
i (hν;φ) (76)

with σY exp
S
(hν;φ) =

√∑
i∈S

σ 2
Y exp
i
(hν;φ) (77)

can be analyzed. This is particularly useful if two or more compo-
nents arise from the same atomic species in the same configura-
tion and therefore refer to the same atomic spatial distribution.
Note that, as explained in Section 2.1.5, the yield Yf,i (hν;φ)
(Eq. (46)) does not take into account experimental aspects of the
measurement (finite width of the photon energy distribution and
crystal imperfection) and can thus not be directly compared to
Y exp
i (hν;φ). This requires the development of a fit model Ymodel

for Y exp
i (hν;φ) to which we turn in Section 2.6. Before that, we

develop the fit model for the reflectivity.

2.5. Fit model of the experimental reflectivity curve

In order to minimize the energy bandwidth of the incident
x-ray beam and to maximize the transmission only for a narrow
range of photon energies, a double crystal monochromator (DCM)
is used at most synchrotrons. The DCM consists of two co-planar
identical crystals (M), typically Si(111) cooled to liquid nitrogen
temperature, with the diffracted beam of the second crystal par-
allel to the incident beam of the first crystal. Assuming that the
Bragg vectors of the first and of the second crystal are parallel,
the reflectivity of the DCM is given by the product of the two
monochromator reflectivities Rtheo

DCM (hν) =
(
Rtheo
M

)2
(hν) (Chap. 3 in

Ref. [53]). To properlymodel the experimental reflectivity Rexp(hν),
the sample (S) reflectivity Rtheo

S (hν) needs to be cross-correlated
with the normalized squared reflectivity of the monochromator7(
Rtheo
M

)2
Norm (hν). This yields

Rtheo
S+DCM (hν) =

(
Rtheo
S ⋆

(
Rtheo
M

)2
Norm

)
(hν) . (78)

The normalization ensures that the area of Rtheo
S+DCM(hν) equals the

area of Rtheo
S (hν) such that only the shape is modified. Here it is

important to use the cross-correlation operation (⋆) and not the
convolution operation (⊗) in order to preserve the energy axis
direction and thereby its physical meaning.8

7 The normalized squared reflectivity of the monochromator is given by(
Rtheo
M

)2
Norm (hν) =

(
Rtheo
M

)2
(hν)∑

hν′
(
Rtheo
M

)2
(hν ′)

.

8 The cross-correlation operation (⋆) is defined as

(f ⋆ g)(τ ) ≡

∫
∞

−∞

f ∗(t)g(t + τ ) dt,

where f ∗ denotes the complex conjugate of f . For comparison, the convolution
operation (⊗) is defined as

(f ⊗ g)(τ ) ≡

∫
∞

−∞

f (t)g(t − τ ) dt.

Note that the reflectivities are real, thus f = f ∗ here.
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Because the incident x-ray beam consists of a distribution of
beams with different photon energies hν and with different inci-
dence angles ϑ at the first monochromator crystal, the reflectivity
of the combination of monochromator and sample is the average
over the ϑ- and hν-distributions, i.e.,

⟨⟨
Rtheo
S+DCM (hν)

⟩
ϑ

⟩
hν
. Since the

hν and ϑ distributions of the incident x-ray beam are not known,
they are accounted for by cross-correlating Rtheo

S+DCM(hν) with a
general Gaussian function GNorm

(
hν; σ

)
the area of which is also

normalized to 1, i.e.,

Rtheo
S+DCM (hν) ⋆ GNorm

(
hν; σ

)
, (79)

where the standard deviation σ is a fitting parameter.9 This gen-
eral Gaussian function is also used to account for the mosaicity
of the sample and the monochromator crystals which leads to a
broadening of the reflectivity curve as well.

In summary, the fit model of the experimental reflectivity is
given by

Rmodel (hν; σ ) = Rtheo
S (hν) ⋆

(
Rtheo
M

)2
Norm (hν) ⋆ GNorm

(
hν; σ

)
. (80)

The residuals

RR(δhν, σ , R0,NR) = Rmodel (hν; σ ) (81)

−
Rexp(hν + δhν) − R0

NR

are minimized by Torricelli using the Levenberg–Marquardt al-
gorithm [54]. The four fitting parameters are underlined: the
normalization factor NR, the constant background R0, the standard
deviation σ of the Gaussian broadening, and the photon energy
shift10 δhν. NR and R0 are necessary to fit raw data that are
uncalibrated and sit on an arbitrary background. Note that this
model provides excellent fits and the artificial manipulation of
the b parameter or stretching of the photon energy axis to fit the
reflectivity as it is performed in other programs (likeDare,XSWfit)
is not necessary.

2.6. Fit model of the experimental yield curve

The same factors that broaden Rtheo
S (hν) to Rexp(hν) also apply

to the photoelectron yield. Therefore, in analogy to Eq. (80), Torri-
celli employs the fit model based on Eq. (46)

Ymodel
S (hν; PS

c , FS
c , γ , φ) =[

1 + SR(φ)Rtheo
S (hν)

+ 2 |SI| (φ)FS
c

√
Rtheo
S (hν)

× cos
(
Φtheo

S (hν)− 2πPS
c + ψ(φ)

)]
⋆ (Rtheo

M )2Norm (hν) ⋆ GNorm (hν; σ) . (82)

Provided the statistical errorsσY exp
S

(hν;φ) are known for eachpoint
of the yield curve11 (see Section 2.4), the residuals

9 Note that convolution (⊗) or cross-correlation (⋆)with a general Gaussian func-
tion are equivalent, as the general Gaussian function is symmetric. For asymmetric
functions such as Rtheo

S (hν) and Rtheo
M (hν) in Eq. (78) however, the twomathematical

operations lead to different results.
10 δhν accounts for variations of the Bragg energy due to small temperature
variations of the sample (and hence its lattice parameters) and/or for imperfect
photon energy calibration of the beamline and/or an inaccurate ξ value.
11 If the statistical errors are not known, they are replaced by a constant value.

RY (PS
c , FS

c ,NS
Y ) =

[
Ymodel

S

(
hν; PS

c , FS
c ,NS

Y , γ , φ

)
−

Y exp
S (hν + δhν, φ)

NS
Y

]
×

NS
Y

σY exp
S

(hν;φ)
(83)

are minimized using the Levenberg–Marquardt algorithm [54].
SR(φ), |SI| (φ) and ψ(φ) are the photoemission correction parame-
ter to the yield (see Section 2.6.1). Rtheo

S (hν),Φtheo
S (hν) and Rtheo

M (hν)
are the sample reflectivity and phase, and monochromator crystal
reflectivity, respectively (see Section 2.3), as calculated by the
theory of dynamical x-ray diffraction. Only three free parameters
remain for fitting Y exp

S (hν;φ): the normalization factor NS
Y , the

coherent position PS
c and the coherent fraction FS

c . Note that δhν

and σ result from the fit of Rexp(hν) (see Section 2.5) and therefore
are kept constantwhen fitting the yield curve. Statistical errorswill
be propagated to the fitted parameters [54]. If the fit is satisfying,
it is possible to save the data point (PS

c , FS
c ) together with its

standard deviation and the parameters used to correct for the
photoemission-induced effect on the yield and display it together
with other data points in an Argand diagram (see Section 2.7).

2.6.1. Calculation of the photoemission correction parameters to the
yield

According to Eq. (41), the SR and SI parameters of Eqs. (42)
and (43) describe how the photoelectron yield of an atom at a
position z differs from the intensity of the x-ray standing wave at
the same position. The evaluation of these parameters depends on
the level of approximation as well as the polarization of the x-ray
beams. As we will show in this section, even at the lowest level
of approximation (dipole only), these parameters are important
to accurately formulate a model for the photoelectron yield when
the condition of ideal normal incidence is not met. The role of the
deviation from normal incidence has been recently highlighted by
van Straaten et al. [55].

π-polarization. It can be shown that within the dipole–quadrupole
approximation (see Section 2.1.1) and for an initial s-state, the SR
and SI parameters (Eqs. (42) and (43)) become [55]

SD+Q
R;f,i=s(φ) = P2(φ)

1 + QH(φ)
1 − Q0(φ)

(84)

and

SD+Q
I;f,i=s(φ) =

P(φ)
1 − Q0(φ)

[
1 +

QH(φ) − Q0(φ)
2

+ i tan∆
QH(φ) + Q0(φ)

2

]
, (85)

with

Q0(φ) =
γ

3
cosφ (86)

and

QH(φ) =
γ

3
cos (φ − 2ξ) , (87)

and the polarization factor12 P(φ) for photoelectrons

P(φ) = sin (φ − 2ξ) /sinφ. (88)

Using the unit vector s and ne defined in Section 2.1.1, we have
cosφ = s · ne, P(φ) = eH · ne/e0 · ne (see Fig. 1). Also ∆ is
defined as ∆ ≡ δd − δp where δd and δp correspond to the phase

12 Note that P(φ) affects the angular dependence of the photoelectron emission,
while Px-ray(ξ ) (see Section 2.3) affects the x-ray reflectivity.
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shifts between the initial s-state wave function and the final state
(d- and p-) wave function, at large distances from the emitter
(where the photoelectron analyzer is located). Note that these
phase shifts must not be confused with the non-dipolar param-
eter δ contained in Eq. (19).13 γ is the non-dipolar parameter
mentioned in the context of Eqs. (19) and (20) and its values are
tabulated in Refs. [56,57]. Eqs. (84) to (88) were derived in Ref. [55]
from the more general Eq. 11.47 of Ref. [34]. They are based on
an analogous level of approximation as Eq. (20), but for an x-ray
standing wave field instead of a single photon field. Within this
approximation, only s → p (dipole term of the matrix element)
and s → d (quadrupole term)14 transitions are considered, and
both final statesmay interferewith each other. Therefore the phase
difference∆ = δd−δp is an important parameter. The values of the
phase shifts δd and δp are available from ab initio calculations [59].

Within the dipole approximation, we obtain for an initial s-state

SDR;f,i=s(φ) = P2(φ) (89)

SDI;f,i=s(φ) = P(φ), (90)

by directly evaluating Eq. 11.44 of Ref. [34], or by setting the non-
dipolar parameter γ = 0 in Eqs. (84) and (85). SDI;f,i=s(φ) is real, thus
ψD

f,i=s = 0, and SDR;f,i=s and SDI;f,i=s are independent of γ and∆.

π-polarization and perfect normal incidence. In the case of perfect
normal incidence (ξ = 0) and π-polarization, P(φ) = 1. Thus,
according to Eqs. (89) and (90) in the dipole approximation (γ = 0),
SDR;f,i=s = SDI;f,i=s = 1. In the dipole–quadrupole approximation
(Eqs. (84) and (85) with γ ̸= 0 and ξ = 0), QH(φ) = Q0(φ) ≡ Q (φ)
and SD+Q

R;f,i=s(φ) and SD+Q
I;f,i=s(φ) simplify to (Eq. 11.50 in Ref. [34])

SD+Q
R;f,i=s(γ , φ, ξ = 0) =

1 + Q (φ)
1 − Q (φ)

, (91)

SD+Q
I;f,i=s(γ , φ, ξ = 0) =

1 + iQ (φ) tan∆
1 − Q (φ)

, (92)

with

Q (φ) =
γ

3
cos (φ) . (93)

Although Eqs. (91) to (93) are often used to correct the effect of
photoemission on the yield, a perfect normal incidence geometry
is usually not possible in real experiments, because the intensity of
the reflected beam ismeasured by a fluorescent screen that cannot
be placed precisely in the upstream direction of the incident beam
(see Fig. 1).

σ -polarization. For σ -polarization and photoelectron emission in
the plane of incidence we have SDR;f,i = SDI;f,i = 1 for any initial
states and within the dipole approximation (Eq. 11.42 in Ref. [34]).
Using the dipole–quadrupole approximation, we have SD+Q

R;f,i=s =

SD+Q
I;f,i=s = 1 only for initial s-states (Eq. 11.49 in Ref. [34]). Because
SI is real in both cases, ψD

I;f,i = ψ
D+Q
I;f,i=s = 0.

Calculating Sr and SI. Once the user has identified the correct
experimental parameters, i.e., σ - orπ-polarization, deviation from
normal incidence (ξ ), direction of detected photoelectrons (φ), and
once they have decided at which level of approximation they want
towork (dipole or dipole–quadrupole), the corresponding SR and SI
have to be calculated using the above equations. Since the required
parameters γ , δp and δd all depend on the photoelectron kinetic

13 In the case of an s-initial state as considered here, δ in Eq. (19) vanishes (see
Section 2.1.1).
14 See Section 1.1.3 in Ref. [58] for a summary of selection rules for electronic
transitions due to the electric dipole (∆l = ±1) and the electric quadrupole (∆l =

0,±2).

energy, the latter needs to be determined first from the Bragg
energy and tabulated core level binding energies. To obtain γ ,
tabulated values from Refs. [56,57] are interpolated to the correct
photoelectron kinetic energy. This step is automatically performed
by Torricelli. To receive δp and δd, the user has to manually
provide the photoelectron kinetic energy as an input to the NIST
Electron Elastic-Scattering Cross-Section Database program [59].
The output values must be manually copied in Torricelli.

2.6.2. Experimental determination of the γ parameter
While the analysis of NIXSW experiments (based on electron

detection in a particular direction) requires the knowledge of the
non-dipolar parameter γ for an accurate data analysis, at the
same time, it offers a means to determine γ . One approach to
determine γ consists of preparing an incoherent over-layer with
respect to the measured hkl-reflection planes,15 so that F i

c = 0. By
doing so, the third term in the sum in Eq. (82) vanishes, and as a
consequence Ymodel

S becomes independent of SI(φ) and therefore
of ∆ (see Eq. (85)). In this case, a single NIXSW experiment is
sufficient to retrieve γ . The fitting function Torricelli uses is given
by Eq. (82), with fixed F i

c = 0 and NS
Y and γ as remaining fitting

parameters

Ymodel,D+Q(hν; γ , φ) = (94)[
1 + P2(φ)

1 + γ cos (φ − 2ξ) /3

1 − γ cos (φ) /3
Rtheo
S (hν)

]
⋆
(
Rtheo
M

)2
Norm(hν) ⋆ G (σ , hν) .

In principle, a second approach is available, but less direct.
This consists of performing two NIXSW experiments on the same
well-defined structure [60]. One is based on Auger electrons that
are insensitive to the photoelectron correction parameters (first
experiment), as they have no memory of the photon propagation
direction. The other is based onphotoelectrons that, in contrast, are
intrinsically subject to the photoemission correction parameters to
the yield. From the Auger-based NIXSW experiment the two struc-
tural parameters (PS

c , FS
c ) can be determined. Determining γ on

the basis of the experimental photoemission-based electron yield
(second experiment) and the previously found structural parame-
ters is then straightforward: only NS

Y and γ remain as fitting pa-
rameters in Eq. (82). Note, however, that this method has two dis-
advantages. First one still has to rely on the theoretical value of∆ to
determine γ . Second, this approach is strongly complicated by the
fact that Auger electrons do not only stem from photon-induced
core holes, but also from bulk secondary electron-induced core
holes, which has to be considered when (PS

c , FS
c ) are determined

from the Auger-based experiment (see for instance Ref. [60]).

2.7. Plotting and saving the fit results

2.7.1. Argand diagram presentation
Presenting (PS

c , FS
c ) in an Argand diagram is a practical way of

comparing and displaying the NIXSW fit results [61]. In Torricelli,
it is possible to collect the fit results of both the reflectivity and
yield curve (fitting parameters as well as statistical error), and to
display the vectorDS

= FS
c e2π iP

S
c in an Argand diagram together

with the propagated statistical error (σPS
c
, σFS

c
). The notationDS

specifies a vector in the 2D Argand space.

15 This can be obtained, e.g., for large organicmolecules, by depositing thick layers
on a cold sample, and using a hkl reflection not parallel to the surface normal.
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2.7.2. Treatment of the error propagation on the average value of
repeated measurements

Often, one needs to repeat the same experiment many times in
order to reduce statistical noise. This means that for a given set
of components S in the chosen core level, one measures many
vectors DS

g = FS
c,g e

2π iPS
c,g , the average of which is DS

G
=

FS
c

G
e2π iP

S
c

G

and where G represents the group of vectors forming
the average. DS

G
is obtained by vector addition in the Argand

diagram. The corresponding statistical errors (σ
FS
c

G , σ
PS
c

G ) can be

calculated using standard error propagation [62] and displayed to-
gether with the average DS

G
in the Argand diagram. The average

value and statistical errors are obtained by first representing each
DS

g and (σPS
c,g
, σFS

c,g
) in Cartesian coordinates (ReDS

g , ImDS
g ) and

(σReDS
g
, σImDS

g
) [63]

ReDS
g = FS

c,g cos(2πPS
c,g ), (95)

ImDS
g = FS

c,g sin(2πPS
c,g ) (96)

and

σReDS
g

=

√(∂ReDS
g

∂FS
c,g

σFS
c,g

)2

+

(
∂ReDS

g

∂PS
c,g

σPS
c,g

)2

. (97)

σImDS
g

is obtained analogously. Using Eqs. (95) and (96), we get

σReDS
g

= (98)√(
cos(2πPS

c,g )σFS
c,g

)2
+

(
−2π sin(2πPS

c,g )FS
c,g σPS

c,g

)2
,

σImDS
g

= (99)√(
sin(2πPS

c,g )σFS
c,g

)2
+

(
2π cos(2πPS

c,g )FS
c,g σPS

c,g

)2
.

Then the weighted average is performed in Cartesian coordinates
and yields [62]

ReDS
G

= (σ
ReDS

G )2
∑
g∈G

σ−2
ReDS

g
FS
c,g cos

(
2πPS

c,g

)
, (100)

ImDS
G

= (σ
ImDS

G )2
∑
g∈G

σ−2
ImDS

g
FS
c,g sin

(
2πPS

c,g

)
, (101)

with the corresponding statistical errors

σ
ReDS

G =
1√∑

g∈G σ
−2
ReDS

g

, (102)

σ
ImDS

G =
1√∑

g∈G σ
−2
ImDS

g

. (103)

One can now transform the weighted average back into polar
coordinates

PS
c

G
=

1
2π

arctan 2

(
ImDS

G

ReDS
G

)
, (104)

FS
c

G
=

√(
ReDS

G)2
+

(
ImDS

G)2
(105)

and the corresponding statistical errors

σ
PS
c

G =

√
⎛⎜⎝σReDS

G ImDS
G

2π
(
FS
c

G)2
⎞⎟⎠

2

+

⎛⎜⎝σImDS
GReDS

G

2π
(
FS
c

G)2
⎞⎟⎠

2

, (106)

σ
FS
c

G =

√⎛⎝σReDS
GReDS

G

FS
c

G

⎞⎠2

+

⎛⎝σImDS
G ImDS

G

FS
c

G

⎞⎠2

. (107)

If the statistical errors are underestimated in the core-level
components fit, the spread of vectors within one group G is larger
than the propagated statistical error of the average (σ

PS
c

G , σ
FS
c

G ).
In that case, Torricelli replaces the propagated statistical error
σ
ReDS

G and σ
ImDS

G by the standard deviation of the mean

σ ′

ReDS
G =

√
1

NG − 1

∑
g∈G

(
ReDS

g − ReDS
G)2

, (108)

σ ′

ImDS
G =

√
1

NG − 1

∑
g∈G

(
ImDS

g − ImDS
G)2

(109)

in Eqs. (106) and (107), where NG is the number of vectors in the
group G. This is then converted into (σ

PS
c

G , σ
FS
c

G ) with Eqs. (106)
and (107).

The data organized in groups together with all parameters
used for the fits can eventually be saved in a standard comma-
separated-values (.csv) formatted file, and loaded at a later point
either in Torricelli, or in any spreadsheet or scientific graphing
and data analysis software.

2.7.3. Simple Fourier vector analysis in the Argand diagram
If identical atomic species located at different heights cannot

be separated (e.g., because the chemical shift difference cannot
be resolved), they will contribute to a single photoelectron yield.
In order to disentangle the various components, a Fourier vector
analysis is required (see for instance Refs. [19,64,65]). For the sim-
ple case in which only two components are expected, Torricelli
can provide a Fourier vector analysis for any given vector D in the
Argand diagram. This vector can then be split into two vectors A
and B. A can be chosen arbitrarily by the user, and the second
vector (B) will be computed such that

FD
c e2π iP

D
c = nAFA

c e2π iP
A
c + nBFB

c e2π iP
B
c (110)

is satisfied. nA and nB are the relative expected concentration of
each species and satisfies nA + nB = 1.

3. Structure of Torricelli

An extensive manual describing in detail how to use Torricelli
is provided with the program and includes many screenshots to-
gether with the description of input and output files. A graphical
representation of the logical structure of Torricelli, including user
input,mainprocessing steps andoutput, is given in Fig. 2 . For expe-
rienced users, a number of keyboard shortcuts have been included
in the program to reduce the number of clicks and accelerate the
analysis. The file structure of the software as well as that of the
analyzed data is also explained in the manual. When Torricelli
starts, all important variables and arrays are declared and values
will be assigned to them as the user goes through the various
sections of the program. As a result, once the theoretical reflectivity
and phase is calculated for a given crystal and Bragg reflection,
one can load and analyze several new data without having to
recalculate the theoretical reflectivity and phase each time. After
each fit or calculation, all necessary results are automatically saved
to prevent loss of data.
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Fig. 2. Schematic representation of the structure of Torricelliwhere each black box represents one important processing step carried out by the corresponding part of the
software. Input from the user is displayed in red along the horizontal arrows. Output is displayed in black along the vertical arrows. A selection of the graphical output is
also given for each processing step. For each part, the corresponding section of the present article is indicated. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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