000857600 001__ 857600
000857600 005__ 20240712101036.0
000857600 0247_ $$2doi$$a10.5194/acp-2018-801
000857600 0247_ $$2ISSN$$a1680-7367
000857600 0247_ $$2ISSN$$a1680-7375
000857600 0247_ $$2ISSN$$a=
000857600 0247_ $$2ISSN$$aAtmospheric
000857600 0247_ $$2ISSN$$achemistry
000857600 0247_ $$2ISSN$$aand
000857600 0247_ $$2ISSN$$aphysics
000857600 0247_ $$2ISSN$$adiscussion
000857600 0247_ $$2Handle$$a2128/20096
000857600 0247_ $$2altmetric$$aaltmetric:47625127
000857600 037__ $$aFZJ-2018-06585
000857600 082__ $$a550
000857600 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0$$eCorresponding author
000857600 245__ $$aExperimental budgets of OH, HO<sub>2</sub> and RO<sub>2</sub> radicals and implications for ozone formation in the Pearl River Delta in China 2014
000857600 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000857600 3367_ $$2DRIVER$$aarticle
000857600 3367_ $$2DataCite$$aOutput Types/Journal article
000857600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1562057403_18409
000857600 3367_ $$2BibTeX$$aARTICLE
000857600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857600 3367_ $$00$$2EndNote$$aJournal Article
000857600 520__ $$aHydroxyl (OH) and peroxy radicals (HO2, RO2) were measured in the Pearl River Delta which is one of the most polluted areas in China, in autumn 2014. The radical observations were complemented by measurements of OH reactivity (inverse OH lifetime) and a comprehensive set of trace gases including CO, NOx and VOCs. OH reactivity was in the range between 15s−1 and 80s−1, of which about 50% was unexplained by the measured OH reactants. In the three weeks of the campaign, maximum median radical concentrations were 4.5×106cm−3 for OH at noon, and 3×108cm−3 and 2.0×108cm−3 for HO2 and RO2, respectively, in the early afternoon. The completeness of the daytime radical measurements made it possible to carry out experimental budget analyses for all radicals (OH, HO2, and RO2) and their sum (ROx). The maximum loss rates for OH, HO2, and RO2 reached values between 10ppbv/h and 15ppbv/h during daytime. The largest fraction of this can be attributed to radical interconveresio reactions while the real loss rate of ROx remained below 3ppbv/h. Within experimental uncertainties, the destruction rates of HO2 and the sum of OH, HO2, and RO2 are balanced by their respective production rates. In case of RO2, the budget can only be closed when the missing OH reactivity is attributed to unmeasured VOCs. Thus, the existence of unmeasured VOCs is directly confirmed by RO2 measurements. Although the closure of the RO2 budget is greatly improved by the additional unmeasured VOCs, a significant imbalance in the afternoon remains indicating a missing RO2 sink. In case of OH, the destruction in the morning is compensated by the quantified OH sources from photolysis (HONO, O3), ozonolysis of alkenes and OH recycling (HO2+NO). In the afternoon, however, the OH budget indicates a missing OH source of (4–6)ppbv/h. The diurnal variation of the missing OH source shows a similar pattern as that of the missing RO2 sink so that both largely compensate each other in the ROx budget. These observations suggest the existence of a chemical mechanism that converts RO2 to OH without the involvement of NO. The photochemical net ozone production rate calculated from the reaction of HO2 and RO2 with NO yields a daily integrated amount of 102ppbv ozone with daily integrated ROx primary sources being 22ppbv in this campaign. This value can be attributed to the oxidation of measured (18%) and unmeasured (60%) hydrocarbons, formaldehyde (14%) and CO (8%). An even larger integrated net ozone production of 140ppbv would be calculated from the oxidation rate of VOCs with OH, if HO2 and all RO2 radicals would react with NO. However, the unknown RO2 loss (evident in the RO2 budget) causes 30% less ozone production than would be expected from the VOC oxidation rate.
000857600 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857600 588__ $$aDataset connected to CrossRef
000857600 7001_ $$00000-0001-9425-9520$$aLu, Keding$$b1
000857600 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b2
000857600 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b3
000857600 7001_ $$0P:(DE-Juel1)2693$$aBohn, Birger$$b4
000857600 7001_ $$0P:(DE-Juel1)16342$$aHolland, Frank$$b5
000857600 7001_ $$0P:(DE-HGF)0$$aLiu, Yuhan$$b6
000857600 7001_ $$0P:(DE-Juel1)16347$$aRohrer, Franz$$b7
000857600 7001_ $$0P:(DE-HGF)0$$aShao, Min$$b8
000857600 7001_ $$0P:(DE-HGF)0$$aSun, Kang$$b9
000857600 7001_ $$00000-0001-7548-8272$$aWu, Yusheng$$b10
000857600 7001_ $$0P:(DE-HGF)0$$aZeng, Limin$$b11
000857600 7001_ $$0P:(DE-Juel1)157908$$aZhang, Yinsong$$b12
000857600 7001_ $$00000-0002-1218-9221$$aZou, Qi$$b13
000857600 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b14
000857600 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b15
000857600 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b16$$eCorresponding author
000857600 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2018-801$$gp. 1 - 28$$p1 - 28$$tAtmospheric chemistry and physics / Discussions Discussions [...]$$vacp-2018-801$$x1680-7375$$y2018
000857600 8564_ $$uhttps://juser.fz-juelich.de/record/857600/files/invoice_Helmholtz-PUC-2019-44%20.pdf
000857600 8564_ $$uhttps://juser.fz-juelich.de/record/857600/files/acp-2018-801.pdf$$yOpenAccess
000857600 8564_ $$uhttps://juser.fz-juelich.de/record/857600/files/acp-2018-801.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857600 8564_ $$uhttps://juser.fz-juelich.de/record/857600/files/invoice_Helmholtz-PUC-2019-44%20.pdf?subformat=pdfa$$xpdfa
000857600 8767_ $$8Helmholtz-PUC-2019-44$$92019-07-01$$d2019-07-02$$eAPC$$jZahlung erfolgt$$pacp-2018-801
000857600 909CO $$ooai:juser.fz-juelich.de:857600$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b2$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b3$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2693$$aForschungszentrum Jülich$$b4$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16342$$aForschungszentrum Jülich$$b5$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16347$$aForschungszentrum Jülich$$b7$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b14$$kFZJ
000857600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b15$$kFZJ
000857600 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857600 9141_ $$y2018
000857600 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857600 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857600 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857600 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857600 9801_ $$aFullTexts
000857600 980__ $$ajournal
000857600 980__ $$aVDB
000857600 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857600 980__ $$aUNRESTRICTED
000857600 980__ $$aAPC
000857600 981__ $$aI:(DE-Juel1)ICE-3-20101013