000857601 001__ 857601
000857601 005__ 20240712101026.0
000857601 0247_ $$2doi$$a10.5194/amt-2018-195
000857601 0247_ $$2Handle$$a2128/20097
000857601 0247_ $$2altmetric$$aaltmetric:43959769
000857601 037__ $$aFZJ-2018-06586
000857601 082__ $$a550
000857601 1001_ $$0P:(DE-Juel1)169780$$aAlbrecht, Sascha R.$$b0$$eCorresponding author
000857601 245__ $$aMeasurements of hydroperoxy radicals (HO<sub>2</sub>) at atmospheric concentrations using bromide chemical ionization mass spectrometry
000857601 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000857601 3367_ $$2DRIVER$$aarticle
000857601 3367_ $$2DataCite$$aOutput Types/Journal article
000857601 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542786139_17915
000857601 3367_ $$2BibTeX$$aARTICLE
000857601 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857601 3367_ $$00$$2EndNote$$aJournal Article
000857601 520__ $$aHydroxyl and hydroperoxy radicals are key species for the understanding of atmospheric oxidation processes. Their measurement is challenging due to their high reactivity, therefore very sensitive detection methods are needed. Within this study, the measurement of hydroperoxy radicals (HO2) using chemical ionization combined with an high resolution time of flight mass spectrometer (Aerodyne Research Inc.) employing bromide as primary ion is presented. The 1σ limit of detection of 4.5×107moleculescm−3 for a 60s measurement is below typical HO2 concentrations found in the atmosphere. The detection sensitivity of the instrument is affected by the presence of water vapor. Therefore, a water vapor dependent calibration factor that decreases approximately by a factor of 2 if the water vapor mixing ratio increases from 0.1 to 1.0% needs to be applied. An instrumental background most likely generated by the ion source that is equivalent to a HO2 concentration of 1.5±0.2×108moleculescm−3 is subtracted to derive atmospheric HO2 concentrations. This background can be determined by overflowing the inlet with zero air. Several experiments were performed in the atmospheric simulation chamber SAPHIR at the Forschungszentrum Jülich to test the instrument performance by comparison to the well-established laser-induced fluorescence (LIF) technique for measurements of HO2. A high linear correlation coefficient of R2=0.87 is achieved. The slope of the linear regression of 1.07 demonstrates the good absolute agreement of both measurements. Chemical conditions during 15 experiments allowed testing the instrument’s behavior in the presence of atmospheric concentrations of H2O, NOx and O3. No significant interferences from these species were observed. All these facts are demonstrating a reliable measurement of HO2 by the chemical ionization mass spectrometer presented.
000857601 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857601 588__ $$aDataset connected to CrossRef
000857601 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b1
000857601 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b2
000857601 7001_ $$0P:(DE-Juel1)169671$$aKang, Sungah$$b3$$ufzj
000857601 7001_ $$0P:(DE-Juel1)171923$$aBaker, Yare$$b4$$ufzj
000857601 7001_ $$0P:(DE-HGF)0$$aMentel, Thomas$$b5
000857601 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b6
000857601 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b7
000857601 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amt-2018-195$$gp. 1 - 19$$p1 - 19$$tAtmospheric measurement techniques discussions$$vamt-2018-195$$x1867-8610$$y2018
000857601 8564_ $$uhttps://juser.fz-juelich.de/record/857601/files/amt-2018-195.pdf$$yOpenAccess
000857601 8564_ $$uhttps://juser.fz-juelich.de/record/857601/files/amt-2018-195.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857601 909CO $$ooai:juser.fz-juelich.de:857601$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169780$$aForschungszentrum Jülich$$b0$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b1$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b2$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169671$$aForschungszentrum Jülich$$b3$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171923$$aForschungszentrum Jülich$$b4$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b6$$kFZJ
000857601 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b7$$kFZJ
000857601 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857601 9141_ $$y2018
000857601 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857601 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857601 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857601 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857601 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857601 9801_ $$aFullTexts
000857601 980__ $$ajournal
000857601 980__ $$aVDB
000857601 980__ $$aUNRESTRICTED
000857601 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857601 981__ $$aI:(DE-Juel1)ICE-3-20101013