
remote sensing  

Article

Long-Term and High-Resolution Global Time Series
of Brightness Temperature from Copula-Based Fusion
of SMAP Enhanced and SMOS Data

Christof Lorenz 1,*, Carsten Montzka 2 ID , Thomas Jagdhuber 3 ID , Patrick Laux 1 ID and
Harald Kunstmann 1,4

1 Institute of Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT),
Campus Alpin, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany; Patrick.Laux@kit.edu (P.L.);
Harald.Kunstmann@kit.edu (H.K.)

2 Forschungszentrum Jülich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), Wilhelm-Johnen-Straße,
52428 Jülich, Germany; c.montzka@fz-juelich.de

3 Microwaves and Radar Institute, German Aerospace Center, Münchener Straße 20, 82234 Weßling, Germany;
Thomas.Jagdhuber@dlr.de

4 Institute of Geography, University of Augsburg, Alter Postweg 118, 86159 Augsburg, Germany
* Correspondence: Christof.Lorenz@kit.edu; Tel.: +49-(0)8821-183-214

Received: 14 September 2018; Accepted: 6 November 2018; Published: 20 November 2018
����������
�������

Abstract: Long and consistent soil moisture time series at adequate spatial resolution are key to
foster the application of soil moisture observations and remotely-sensed products in climate and
numerical weather prediction models. The two L-band soil moisture satellite missions SMAP (Soil
Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) are able to provide soil
moisture estimates on global scales and in kilometer accuracy. However, the SMOS data record has an
appropriate length of 7.5 years since late 2009, but with a coarse resolution of∼25 km only. In contrast,
a spatially-enhanced SMAP product is available at a higher resolution of 9 km, but for a shorter
time period (since March 2015 only). Being the fundamental observable from passive microwave
sensors, reliable brightness temperatures (Tbs) are a mandatory precondition for satellite-based soil
moisture products. We therefore develop, evaluate and apply a copula-based data fusion approach for
combining SMAP Enhanced (SMAP_E) and SMOS brightness Temperature (Tb) data. The approach
exploits both linear and non-linear dependencies between the two satellite-based Tb products and
allows one to generate conditional SMAP_E-like random samples during the pre-SMAP period. Our
resulting global Copula-combined SMOS-SMAP_E (CoSMOP) Tbs are statistically consistent with
SMAP_E brightness temperatures, have a spatial resolution of 9 km and cover the period from 2010 to
2018. A comparison with Service Soil Climate Analysis Network (SCAN)-sites over the Contiguous
United States (CONUS) domain shows that the approach successfully reduces the average RMSE of
the original SMOS data by 15%. At certain locations, improvements of 40% and more can be observed.
Moreover, the median NSE can be enhanced from zero to almost 0.5. Hence, CoSMOP, which will be
made freely available to the public, provides a first step towards a global, long-term, high-resolution
and multi-sensor brightness temperature product, and thereby, also soil moisture.

Keywords: brightness temperature; soil moisture; copula; data fusion; SMAP; SMOS

1. Introduction

Water availability and thereby food security, human health and ecosystem function are directly
affected by surface soil moisture [1]. For regulating water and energy fluxes between the ground and
the atmosphere, knowledge about soil moisture is key to assess the different components of the water,
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energy and biogeochemical cycle [2]. Soil moisture is an important storage memory component for
precipitation and radiation anomalies, inducing persistence in the climate system. Moreover, it is
involved in various feedback mechanisms at the local, the regional and the global scales [3]. Therefore,
it also plays a major role in climate-change projections.

For climate research, long time series of essential variables, like precipitation, temperature, soil
freeze/thaw, snow cover or snow water equivalent, are requested, which typically span over several
decades [4,5]. These long records are necessary in order to reveal and separate the slowly changing
climate signal from short-term variations. The European Space Agency (ESA) identified soil moisture
to be such an essential climate variable and developed within its Climate Change Initiative (CCI) a
long-term global satellite-based soil moisture data record [6,7].

This dataset is based on the combination of passive, as well as active microwave records
from the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave
Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), the Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E), the European Remote Sensing
(ERS) Scatterometer and the Advanced Scatterometer (ASCAT) and currently spans a time series from
1978 to the present. The ESA-CCI soil moisture product has been used extensively for hydrological
applications like soil moisture trend analyses [8], drought impact analyses [9], or the development of a
global long-term rainfall dataset [10].

A challenge for establishing the multi-sensor data record was to integrate different sensor
frequencies (Ku-, X- and C-band), as well as further varying sensor characteristics, such as diverse
incidence angles and the mixture between active or passive acquisition modes. However, with this
dataset, global structural and multi-decadal trend analyses in surface soil moisture from observational
data alone are possible [8]. The combination method based on CDF (Cumulative Distribution Function)
matching is continuously improved, and Soil Moisture and Ocean Salinity (SMOS) [11] L-band data
will be added in the future. This was supported by previous work of Owe et al. [12] combining the
passive microwave sensors and by Liu et al. [13] combining ASCAT and AMSR-E by CDF matching.
In addition to the ESA CCI initiative, other research striving to extend soil moisture time series exists.

While the mentioned satellite missions provide coarse resolution information, relevant
hydrological processes, important for most of the agricultural, hydrological, and meteorological
applications, occur at finer spatial resolution [14]. Similarly, an appropriate representation of
spatio-temporal soil moisture dynamics in climate simulations is crucial [15]. However, due to
the high spatial heterogeneity of soil moisture, downscaling is not simple and straightforward [16–19].
An overview of different downscaling methods for satellite remotely-sensed soil moisture can be
found in Peng et al. [20]. Peng et al. [21] disaggregated the ESA CCI product by the vegetation
temperature condition index calculated from MODIS surface temperature and the vegetation index.
Downscaling methods for SMOS have been developed by Merlin et al. [22] and Merlin et al. [23] using
the optical-derived ratio of actual to potential evaporation (soil evaporative efficiency) to define the
downscaling relationship in a nonlinear way. The DISPATCH (DISaggregation based on Physical And
Theoretical scale CHange) approach is able to improve correlation to point-scale in situ measurements
by a robust representation of soil moisture variability at sub-SMOS-resolution down to scales of
3 km and 100 m [24]. This is true also for very wet conditions, where the spatial variability of soil
moisture, as well as the temperature differences required for soil evaporative efficiency estimation
become lower [25]. Jin et al. [26] developed a hybrid geostatistical approach, which integrates
geographically-weighted regression and area-to-area kriging to downscale AMSR-2 by Moderate
Resolution Imaging Spectroradiometer (MODIS) products. Based on a method that predicts the soil
moisture standard deviation as a function of the mean soil moisture using soil texture information,
Montzka et al. [27] were able to develop a downscaling method for SMAP, SMOS and ASCAT by
considering sub-grid textural heterogeneity. Further downscaling approaches have been analyzed
for SMOS data, such as methods similarly exploiting SMOS-optical sensor relationships [28–31] or
different machine learning approaches [32].



Remote Sens. 2018, 10, 1842 3 of 26

The concept of the SMAP (Soil Moisture Active Passive; Entekhabi et al. [33]) mission was
to disaggregate radiometer measurements by the radar backscatter to reach a spatial resolution
of 3 km. The baseline algorithm by Das et al. [34] was developed to use radar backscatter for
radiometer brightness temperature disaggregation. The earlier proposed alternative approach [35]
disaggregates radiometer-based soil moisture with radar backscatter. Montzka et al. [36] analyzed
also the fusion of two single-source soil moisture products from radar and a radiometer. Akbar and
Moghaddam [37] developed a Combined Active-Passive (CAP) soil moisture retrieval algorithm,
which is based on Monte Carlo simulations and optimization. Rötzer et al. [38] found relationships
between backscatter and vegetation opacity, which can be used for improved resolution soil moisture
retrieval. Jagdhuber et al. [39] introduced a physics-based model using Kirchhoff’s law of energy
conservation for the covariation of active and passive microwaves over soil surfaces with vegetation
cover. With this model, the relationships of active and passive microwave observations can be explored
physically and also forward modeled, leading to a deeper understanding of joint (active-passive)
soil moisture retrieval.

Achieving higher spatial resolution would be a significant step towards the applicability of
space-borne soil moisture data for regional hydrological applications, as other global soil moisture
products are usually provided with much coarser spatial resolutions in the range of tens of kilometers.
However, due to the failure of the SMAP radar in July 2015, a lack of high-resolution soil moisture
information exists. The scientific community therefore seeks for alternative data sources, which
can be used for downscaling the coarse SMAP radiometer data. Rüdiger et al. [40] disaggregated
L-band SMOS data by C-band Envisat ASAR data. Another dual-frequency concept with an
SMAP-Sentinel-1 combination is based on [41], where a first dataset has been published recently [42].
Colliander et al. [43] used MODIS data for downscaling radiometer-based SMAP soil moisture estimates
to 1 km. Optical/thermal infrared observations from MODIS were also used by Zhao et al. [44], who
developed a random forest-based downscaling approach for passive SMAP data. For a radiometer-only
higher-resolution concept, the overlapping measurements in the SMAP conical scan sampling pattern were
used for interpolation by the the Backus–Gilbert method [45], which results in higher spatial resolution
brightness temperature [46,47]. The results are superior to classical ad-hoc or empirical interpolation
techniques [48]. As the spatial resolution of 9 km of this so-called SMAP Enhanced (SMAP_E) product
is still assumed to be too coarse for certain applications, Alemohammad et al. [49] and Alemohammad
et al. [50] developed an artificial neural network-based disaggregation algorithm to further downscale
SMAP data to a resolution of around 2 km. A comparison of the performance of different tailor-made
downscaling techniques for SMAP and SMOS is given by Sabaghy et al. [51].

The L-band systems SMAP and SMOS provide high accuracy soil moisture estimates [52–60], but
SMAP has delivered data since 31 March 2015 only, while SMOS has a longer time record, starting
in late 2009. In contrast, for SMAP, a 9 km resolution product has been recently released, whereas
SMOS data are only available at ∼25 km. A combination of both would generate a higher resolution
(9 km) soil moisture time series from 2010 to the present. Both multiple mission data blending, as
well as spatial disaggregation are often performed at the soil moisture product level, which might be
complicated due to the spatial non-linearity of the soil moisture patterns.

In this study, we focus on the combination of the measured brightness temperature products
from SMOS and SMAP at a low processing level. We develop a method to combine longer time
series brightness temperature data from SMOS with the higher posting SMAP enhanced brightness
temperature. The resulting product (from hereon called Copula-combined SMOS-SMAP, CoSMOP):
(a) has a spatial posting of 9 km similar to SMAP_E; (b) covers the period from 2010 to the present,
similar to SMOS; and (c) is provided at a single incident angle like SMAP_E. During the discussion
and analysis, it will be provided in SMAP_E climatology, so that it is statistically consistent with the
NASA mission data.

The time series extension and the resolution enhancement are typically performed in two
independent steps, for instance using the methods mentioned before. The proposed copula method
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is able to conduct both processes in a single, consistent framework, which is similar to classical
bias-correction approaches like, e.g., quantile mapping. Copulas have been extensively used in various
fields of hydrology for improving the spatial resolution of modeled precipitation [61,62] and soil
moisture [63], for estimating streamflow in ungauged catchments [64], for the joint modeling of peak
flows and volumes in a Canadian basin [65], for bias-correcting the output from Regional Climate
Models (RCMS) [66,67] or for merging precipitation data from rain gauges and radar [68]. Recently,
Leroux et al. [69] proposed the application of a copula-based data fusion to extend soil moisture
estimates from SMOS with data from the Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E). By validation with in situ data from U.S. watersheds, their results indicated that CDF
matching improves the correlation, whereas copulas improve the Root Mean Squared Error (RMSE).

We extend the work from Leroux et al. [69] to the global scale and estimate the pixel-wise
statistical relationship between SMAP_E and SMOS brightness temperatures, which we approximate
with a set of bivariate copula-functions. The advantage of such an approach is the flexibility, as we
do not have to pre-suppose any marginal or joint distributions of the SMAP_E and SMOS brightness
temperatures. We draw conditional random samples, which give us SMAP_E-like values during the
pre-SMAP period from April 2010 to March 2015. In contrast to previous works, the proposed data
fusion is applied to the global SMOS and SMAP_E datasets for generating global-scale estimates of
brightness temperatures. By this procedure, SMAP_E brightness temperatures are virtually extended
to the SMOS period. The resulting combined-Copula-based SMOS/SMAP_E product (CoSMOP) is
statistically consistent with SMAP_E, covers the period from 2010 to 2018 and is provided on a spatial
grid of 9 km posting. To our knowledge, this study is the first effort to generate a global, long-term,
high-resolution, purely satellite-based brightness temperature product.

Even if the combination of multi-frequency products introduces further challenges to solve [39],
this study can be seen as an initial step to generate long-term soil moisture time series dating back to
1978 utilizing the passive microwave missions SMMR, SSM/I, TMI and AMSR-E.

2. Data

The copula-based fusion of SMOS and SMAP_E data is performed on the brightness Temperature
(Tb) level. In order to extend simultaneously the time series and gain higher resolution Tb, we
avoided using the 36 km SMAP product and applied the procedure to the spatially-enhanced
(Backus–Gilbert) product, which comes at a spatial resolution of 9 km [46,70]. The SMOS Level
3 brightness temperatures, which are provided in a spatial grid of 25 km are therefore interpolated to
the 9 km SMAP EASE 2.0 grid [71] with a simple nearest neighbor approach. The reason is that the
interpolation should not change the SMOS-derived Tb-values, but only to ensure consistency between
the SMOS- and SMAP_E-grids. We also filter both SMOS and SMAP_E products with the EASE-Grid
2.0 Land-Ocean-Coastline-Ice Mask [72] and remove all pixels which are not flagged as land. We are
well aware that this simple selection criterion does not consider the heterogeneity of the quality of Tb
retrievals due to different land cover types (e.g., dense vegetation, mountainous regions, etc.). As this
might also affect our Tb-estimates, it will be necessary to evaluate the performance of CoSMOP with
respect to different land cover types. However, this will be part of further studies as such a detailed
analysis would go beyond the scope of our study.

For demonstration purposes, we focus here on horizontally polarized data only. The approach can
also be applied without further adjustments to vertically polarized brightness temperatures. In order to
minimize the impact due to different retrieval times from SMAP and SMOS, we only use the overpasses
at around 6 AM local time, i.e., the ascending node from SMOS and the descending node from SMAP,
respectively, and assume a time window of six hours between the SMOS- and SMAP-retrievals.

2.1. SMOS CATDS Level 3 Brightness Temperatures

The SMOS Level 3 data [73] is obtained from the Centre Aval de Traitement des Données SMOS
(CATDS) and consists of daily maps of global Tb binned and averaged into fixed incidence angle classes
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with the polarizations expressed in the ground reference frame (horizontal and vertical components).
The data covers the period from April 2010 to present at a posting of 25 km. The resolution is the result
of the relatively coarse spatial resolution of the radiometer from SMOS (around 50 km) and a spatial
sampling of 15 km. This oversampling allows for the multiple scanning of a single location, through
which the resolution of the final SMOS products is higher than the resolution of the radiometer. Due
to SMAP’s fixed incidence angle of 40◦ [74], the representative observation from the SMOS product
was selected. According to Botar et al. [73], the SMOS daily global polarized Tb product provides
an interpolated field at 40◦, which is compatible with SMAP data. However, we also used the values
from the adjacent incidence angle bins between 37.5◦ and 42.5◦ in order to increase the sample size to
estimate the copulas adequately. The Tb estimates from the three incidence angles have been averaged
and were used without additional filtering for the copula-based data fusion.

2.2. SMAP Enhanced

The SMAP radiometer uses a parabolic mesh reflector (offset from nadir), which rotates about
the nadir axis and provides a conically-scanning antenna beam at 1.41 GHz with an incidence angle
of ∼40◦. The −3 dB antenna footprint of 40 km (root-ellipsoidal-area) is typically re-sampled to a
36 km grid. However, as the conical beam scan provides overlapping observations, recently, a 9 km
radiometer product was generated [46,70] based on the Backus–Gilbert (BG) interpolation [75]. The
centers of the antenna footprints from the multiple scans of a single location are interpolated via
the BG-technique, which results in a higher spatial resolution compared to the standard radiometer
resolution. It should be emphasized that the BG-interpolation does not require the high-resolution
active sensor and is therefore based on data from SMAP’s radiometer only. We use the ground level
SMAP Enhanced L1C Radiometer Half-Orbit 9 km EASE-Grid Brightness Temperatures (Version 1)
(SMAP_E) to introduce a copula approach for SMOS and SMAP_E fusion. It was recorded at 06:00
descending local overpass time data to reduce Faraday rotation impacts and vertical target temperature
gradients. In order to detect and mitigate Radio Frequency Interference (RFI), the SMAP radiometer
uses a combination of time and frequency diversity, kurtosis detection and the use of the fourth Stokes
thresholds [76].

3. Methods

The theoretical basis of copula-based data fusion approaches is given by [77], while a detailed
and comprehensive introduction to copulas can be found in Nelsen [78]. Here, only a brief overview is
presented. Copulas are functions that link multivariate distribution functions F (x1, ..., xn) from the
independent and identically distributed (i.i.d.) random variables x1, ..., xn to their univariate marginals
FXi (xi) [66]. This is expressed in Sklar’s theorem:

F (x1, ..., xn) = C
(

FX1 (x1) , ..., FXn (xn)
)

; C : [0, 1]n → [0, 1] (1)

with the multivariate distribution F (x1, ..., xn), the copula C and the univariate marginals FXi (x1, ..., xn).
The multivariate PDF is then given through:

f (x1, ..., xn) = c
(

fX1 (x1) , ..., fXn (xn)
)
· fX1 (x1) · ... · fXn (xn) (2)

Thus, all information about the dependency between random variables is included in the
copula-PDF c. In this study, we focus on the bivariate case (the bivariate case can be easily enlarged to
three or more dimensions), i.e.,

f (x, y) = c ( fX (x) , fY (y)) · fX (x) · fY (y) (3)

where x and y are the simultaneous SMOS and SMAP_E Tb records within a time window of six hours
during the period April 2015–March 2018 in a single 9 km pixel.
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After this introduction to the copula theory and before providing details about the validation
procedure in Section 3.7, we introduce the multiple processing steps of the copula-based data fusion of
observed SMOS and SMAP_E Tbs to provide the final CoSMOP product:

1. Transformation of absolute Tbs to anomalies by subtracting the mean annual cycle (Section 3.1);
2. Estimation of the univariate marginal distributions FX (x) and FY (y) using a mixture between a

Gaussian kernel estimate and a generalized Pareto distribution for the upper and lower 10% of
the distribution; transform the SMOS and SMAP_E Tb to the unit interval (Section 3.2);

3. Identification a suitable copula model C (u, v) for modeling the bivariate dependency structure
using the Bayesian copula selection from Huard et al. [79] (Section 3.3);

4. Computation of the corresponding copula parameter θ using a Canonical Maximum Likelihood
Estimate (CMLE) (Section 3.4);

5. Conditioning of the copula CDF on SMAP_E Tb and drawing conditional random samples
(Section 3.5);

6. Inverse transformation of the random samples to the data space (Section 3.6);
7. Computation of the full Tb-signal by adding back the mean annual cycle from SMAP_E to the

transformed conditional random samples.

3.1. Step 1: Transformation to Anomalies

Hydrometeorological (here: soil moisture) or remote sensing (here: brightness temperatures)
variables often underlie certain periodic effects like annual or daily cycles. These effects create an
artificial dependency between variables by repeating the same periodic patterns, which superimposes
the real statistical relationship. There are various methods to remove these periodical effects. As
an example, Laux et al. [66] used an ARMA-GARCH approach for removing a large part of the
autocorrelation in precipitation time-series. However, while such complex time-series models are
justified from a statistical point of view, they can be difficult to interpret, as the residuals have only
little physical meaning.

In this study, we therefore compute the mean annual cycle (i.e., an average for January, February,
etc.) from SMOS and SMAP_E Tbs between April 2015 and March 2018, which is then removed from
all datasets. We are well aware that the mean annual cycle from only three years of data might not be
representative of the climatological behavior of Tbs. However, we are only interested in the removal of
large parts of the periodic effects in the Tb time series, and we assume that monthly averages from
three years of data are sufficient for this exemplary purpose.

3.2. Step 2: Estimation of the Marginals

The second step of the approach is the estimation of the marginals and the transformation of Tb
anomalies to the unit interval or rank space (normalization), i.e.,

ri = FX (xi) with ri ∈ [0, 1] (4)

si = FY (yi) with si ∈ [0, 1] (5)

where xi and yi are the SMOS- and SMAP_E-derived brightness temperature anomalies, FX and FY
the marginal distributions (CDFs) of SMOS and SMAP_E Tbs and ri and si the CDF-transformed Tbs
in a single 9 km pixel, respectively. It should be noted that we generally differentiate between the
transformed Tb values r and s and the percentiles u and v, which can be computed by discretizing the
unit interval into equally-sized bins and counting the number of r or s values until a particular bin or
by simple interpolation.

There are multiple options for estimating these marginals, including both parametric, e.g., [63,67],
and non-parametric, e.g., [61], methods. Similar to Laux et al. [66], we use a semi-parametric approach,
where the interior of the distribution is estimated using a Gaussian kernel function. In order to
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compensate for the small number of samples in the tails, the upper and lower 10% of the CDF are
approximated through a Generalized Pareto Distribution (GPD):

f (x) =
1
σ

(
1 + k

(
x− θ

σ

))−1− 1
k

(6)

with the scale parameter σ, the shape parameter k and the location parameter θ.
Several experiments have shown that this method usually results in higher copula parameters

(Section 3.4) compared to, e.g., purely non-parametric estimates like the empirical CDF. This is due
to the fact that the tails of the distributions are approximated with the same parametric model and
therefore share similar characteristics. As the magnitude of the copula parameter is sensitive to these
tails, this similarity leads to usually larger copula parameters and therefore to a higher dependency. It
is noted that there might be cases where other fully-parametric distributions are slightly better suited.
However, we assume that the kernel density estimate is more universal and flexible and thus more
suitable for global-scale applications where an inspection and evaluation of each pixel’s distribution
would be too computationally expensive.

3.3. Step 3: Identification of a Suitable Copula

There are multiple options for finding a copula that describes the dependency between SMOS-
and SMAP-derived Tb. Many studies use the empirical copula [80]:

Cn (u, v) =
1
n

n

∑
i=1

1
( ri

n
≤ u,

si
n
≤ v

)
(7)

where r and s are the CDF-transformed Tbs using the previously derived semi-parametric distributions
(see Section 3.2). 1 (·) is the indicator function, which takes a value of 1 if the conditions in its argument
are satisfied, u and v are the percentiles of SMOS- and SMAP_E-derived Tbs, and n is the number of
samples. In analogy to the empirical CDF, this non-parametric, empirical copula-CDF can be computed
by discretizing the unit interval into equally-sized bins and counting the number of r and s values up
to a particular u and v bin. After estimating the copula parameter (Section 3.4) for a pre-defined set of
theoretical copulas, the empirical copula is compared against the theoretical models using, e.g., the
Cramér–von Mises statistic [81] or deterministic error measures like the RMSE [82]. In this study, we use
a set of six different copula models, namely the Clayton, Frank, Gumbel, Farlie–Gumbel–Morgenstern
(FGM), Ali–Mikhail–Haq (AMH) and Gaussian copulas (see Appendix A). Using different copula
models allows for a better representation of specific dependency structures between two random
variables (here: the SMOS- and SMAP_E-derived Tbs). In general, the main difference is the description
of the tail dependencies, i.e., the dependencies of the very high and low values. While the Clayton
and Gumbel copulas are suitable for strong left and right tail dependence, respectively, the symmetric
Frank copula describes stronger dependencies in the center of the distribution. The FGM-copula can be
used if the dependency is relatively low, while the Gaussian copula is highly flexible, as it can describe
both positive and negative dependencies [69]. A comprehensive list of different copula models, as well
as their characteristics can be found in Nelsen [78].

A suitable copula is then identified, e.g., by parametric bootstrapping [83]. However, especially
the bootstrapping requires large computational effort, as it needs a reasonably large number of
resamples. Such methods are hence only of limited use for global-scale applications due to the large
number of pixels. We therefore use a Bayesian approach, which has been proposed by Huard et al. [79].
The main difference is that we do not have to compute a copula-parameter in advance, but we first
identify the most likely copula from which the random samples (i.e., the CDF-transformed Tbs)
are drawn and then estimate the corresponding parameter. This is achieved by treating the copula
parameter as nuisance variables and parameterizing the copula density in terms of the rank correlation
coefficient, i.e., Kendall’s τ. The distribution of τ is then used as prior probability distribution within a
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Bayesian framework. For every grid cell, we compute the likelihood of the different copula models,
which are listed in Table A1. The model with the largest probability (i.e., p-value) is then selected
for the subsequent computations. This method has been used successfully in multiple hydrological
applications, e.g., [63,69,84].

3.4. Step 4: Computation of the Copula Parameter

After a suitable copula has been identified, the corresponding copula parameter θ is computed.
A widely-used method is the relationship between the copula parameter and the rank correlation
coefficient, i.e., Kendall’s τ:

τ = 4
∫ 1

0

∫ 1

0
Cθ (u, v) dCθ (u, v)− 1 (8)

where Cθ denotes a specific copula with the parameter θ. For bivariate Archimedean copulas, which
are explicitly defined through:

Cφθ
(u, v) = φθ

(
φ−1

θ (u) + φ−1
θ (v)

)
(9)

with the generator φ, Genest and MacKay [85] showed that:

τ = 1 + 4
∫ 1

0

φθ (t)
φ′θ (t)

dt, (10)

where φ′θ (t) is the first derivative with respect to the parameter t. For some copulas, there is a closed
expression for this relationship, i.e., we can directly compute the copula parameter from Kendall’s
τ. In turn, this link allows one to interpret the copula parameter as a measure for the strength of
dependence: higher copula parameters reveal a stronger dependence [66]. It should be noted, though,
that the magnitude of the copula parameter depends significantly on the chosen copula (see Table A1).
Thus, different copula parameters must always be compared by considering the respective copula
family.

Kim et al. [86] analyzed the performance of several parameter estimation approaches and
concluded that if the marginal distributions are not known, the Canonical Maximum Likelihood
Estimation (CMLE; Genest et al. [87]) performs best. We therefore decided to use CMLE, as it also
provides a faster and more efficient way (compared to the inversion of τ) to estimate θ.

3.5. Step 5: Conditional Sampling

After estimating the copula parameter, the so-called conditional copula is calculated:

P (V ≤ v|U = r) =
∂C (u, v)

∂u

∣∣∣∣
u=r

(11)

In the bivariate case, this conditional copula is simply the uniform CDF for the variable V under
the constraint that U takes the value r. Here, the copulas in every single 9 km grid cell are conditioned
on the SMOS Tbs, which means that we take a single CDF-transformed SMOS-Tb value ri and evaluate
the partial derivative of the copula ∂C(u,v)

∂u at that particular location. This allows for the estimation
of a conditional SMAP_E-like CDF for each daily SMOS value within every 9 km grid cell at that
particular location. These CDFs are now used to generate a sufficiently large number of conditional
random samples vi,u=ri for every SMOS Tb ri during the full study period April 2010–March 2018.
Here, we decided to use 500 samples as a compromise between a statistically-sufficient sample size
and computational costs.
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3.6. Step 6: Inverse Transform of Random Samples

From these 500 values, we compute the mean vi,u=ri and, as a measure for the robustness of the
estimated Tbs, the standard deviation, which are then transformed back to the data-space using the
inverse probability integral transformation:

vi,u=ri = FY
(
yi,u=ri

)
⇔ yi,u=ri = F−1

Y
(
vi,u=ri

)
. (12)

It should be noted that we can also use the median instead of the mean and the median absolute
deviation instead of the standard deviation for the subsequent computations. However, we think that
the mean and standard deviation are more descriptive and easier to interpret in this context. For each
SMOS Tb value in every grid cell and point in time, we therefore obtain an SMAP_E-like Tb and a
corresponding uncertainty estimate through its standard deviation.

In the end, the mean annual cycle removed in Step 1 is added back to the data to obtain the final
Copula-combined SMOS-SMAP_E (CoSMOP) product. Here, we add back the mean annual cycle of
the SMAP_E product, which has a spatial posting of 9 km. However, it is also possible to add back the
mean annual cycle of SMOS in a similar way, but this is available just at the coarse resolution of SMOS,
so that it defeats the purpose of resolution enhancement.

3.7. Validation Procedure

While the CoSMOP-Tb product is available at the global scale, we perform our validation at the
Tb level over the Contiguous United States (CONUS) only. As only a few long-term time series of
Tb records are available worldwide, a comparison towards Tb forward simulations using time series
from the USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN) [88]
is performed. As SCAN includes around 200 stations, this validation strategy allows for the long-term
comparison of satellite- and station-based brightness temperatures over almost the whole CONUS
domain, in contrast to the evaluation against directly observed Tbs from, e.g., field campaigns, which
are available for only limited points in time and space.

Forward calculations of Tb are performed by the L-Band Microwave Emission of the Biosphere
Model (L-MEB) [89]. L-MEB is a so-called τ-ωmodel, where the radiative transfer in the vegetation
layer is described through its optical depth τ and single scattering albedo ω. It shares the same
procedures as the SMOS L2 soil moisture processor. The Mironov dielectric mixing model has been
implemented to convert the measured soil moisture into a dielectric constant [90].

For the SCAN sites where top soil moisture (−5 cm), top soil temperature (−5 cm), soil
temperature in depth (−50 cm), as well as air temperature in 2 m height are available in hourly
resolution as forcing data for L-MEB, Tb time series in H- and V-pol have been generated [91]. For
consistency with SMAP, the SMAP auxiliary soil parameters sand fraction, silt fraction and soil bulk
density are utilized [92], as well as the respective vegetation opacity map from the SMAP Enhanced
L3 Soil Moisture product [93].

From the whole network, which consists of more than 200 stations, we removed the stations
that are located outside the CONUS-region and that do not provide the information necessary for the
L-MEB approach. We further defined two validation periods in order to analyze the performance of
CoSMOP during the pre-SMAP-period, but also against SMAP_E-derived Tbs:

1. Single mission period from April 2010 to March 2015: Comparison of SMOS and
CoSMOP with L-MEB

2. Dual mission period from April 2015 to March 2018: Comparison of SMOS, SMAP_E and
CoSMOP with L-MEB

From the remaining list of stations, we therefore removed all sites that have less than one year
of observations in the first or second period, which results in 149 stations (blue dots in Figure 1). We
also defined a set of 53 stations with almost continuous records (i.e., at least 80% during Period 1
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and 2, respectively; see the red dots in Figure 1). The comparison of SMOS, SMAP_E and CoSMOP
against the Tb-data generated by L-MEB is carried out over all 149 stations for analyzing the robustness
and performance over as many locations as possible, but also for the 53 stations for analyzing the
long-term performance.

Figure 1. Locations of the selected Service Soil Climate Analysis Network (SCAN)-sites (dots) used for
validating the Copula-combined (Co)SMOP brightness temperatures. The blue dots depict stations
with at least one year of observations during both the calibration and validation period; the red dots
indicate stations that cover at least 80% of both periods.

All station-based brightness temperatures are corrected for outliers, as some stations occasionally
show extreme Tbs. The values that deviate more than three-times the standard deviation from the
mean (for each station) are removed.

Similar to [60], we do not only consider the grid cell in which the station is located, but also the
neighboring pixels, as the closest pixel might not be the most representative. Here, we assume a search
radius of 9 km, which results, depending on the relative position of the station with respect to the 9 km
EASE 2.0 grid, in an average over two to four pixels.

There might be, however, a general mismatch between the magnitude of the L-MEB and the Tb
observations. This can be seen when, e.g., the CDFs from the satellite and the simulated SCAN Tbs are
compared (not shown).

As the station data are not considered in the data fusion, it is not expected that the approach
is able to correct for that inconsistency. Therefore, we first remove the average Tb from April 2015
to March 2018 from all datasets. The comparison with the L-MEB Tbs is therefore carried out at the
anomaly level.

These anomalies from SMAP_E, SMOS and CoSMOP are then compared against the station-based
anomalies in terms of the RMSE:

RMSE =

√√√√ 1
N

N

∑
n=1

(Tbn,sat − Tbn,lmeb)
2 (13)
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and the Nash-Sutcliffe-Efficiency (NSE)

NSE = 1−

N

∑
n=1

(Tbn,sat − Tbn,lmeb)
2

N

∑
n=1

(
Tbn,lmeb − Tbn,lmeb

)2
. (14)

The Tbn,sat are the spaceborne recorded Tbs from SMOS, SMAP_E and CoSMOP at the locations
of the stations, Tbn,lmeb the forward-modeled (L-MEB) Tbs from the soil moisture observation stations
and N the number of simultaneous retrievals. The RMSE is used here as an absolute error metric,
while the NSE, according to Lorenz et al. [94], is the normalized mean absolute error and more sensible
for the overall performance of the estimates.

4. Results and Discussion

4.1. Basic Properties of the Merged Data

One critical issue about any statistical merging technique is the number of (simultaneous) samples
for estimating the joint distribution. Here, we are using three years of data from SMOS and SMAP_E,
which roughly provide one retrieval for each pixel every three days. We further select a time window
of a maximum of 6 h between the retrieval of SMAP and SMOS. Due to the opposing orbits of SMAP
and SMOS, however, the number of data pairs depends on geographic latitude. Figure 2a therefore
shows the number of pairs that have been used for fusing data from SMOS and SMAP. Especially over
the higher northern and southern latitudes, there are more than 900 pairs for estimating the copula
and the corresponding parameters. In the mid-latitudes, there are still more than 250 pairs, while this
number decreases to around 150 pairs over the equatorial regions. The SMOS data over large parts of
Northern Africa and the whole of Asia, however, suffer from high Radio Frequency Interference (RFI)
for the SMOS product [73]. These areas usually show less than 100 simultaneous retrievals, which
does not allow the reliable estimation of the dependency structure within the copula-based approach
so far. We therefore removed these regions from this study.

Due to the relationship between Kendall’s rank correlation and the copula (higher rank correlations
imply, depending on the fitted copula model, higher copula parameters; see Section 3.4), an analysis of the
correlation in each pixel already indicates the magnitude of the similarities between SMAP_E and SMOS.
Therefore, Figure 2b shows Kendall’s τ, which is derived from brightness temperature anomalies during
the calibration period April 2015–March 2018. The rank correlation between SMOS and SMAP_E Tbs
depends significantly on the land cover and vegetation types. Especially over shrublands, grasslands or
similar vegetation classes, rank correlations above 0.8 can be observed. Over densely-vegetated areas, like
the tropical rain forest, however, the rank correlations drop to values around zero. It should be noted that
the rank correlation coefficient is based on the Tb anomalies, where the annual cycle has been removed.
Low rank correlations over the tropics are thus also an indicator for a highly periodic and dominant
annual cycle, which does not change significantly from year to year. The remaining anomalies from
SMOS and SMAP_E have nothing in common, which leads to both low rank correlation values and low
copula parameters.

The relatively small number of data pairs, together with the low correlations, also affect the
robustness of the derived copulas and their parameters for the equatorial regions. This can be seen in
Figure 2c, which shows the most likely copula models (i.e., the models with the highest p-values) for
every grid cell. Especially over regions with low rank correlation coefficients, the identified copula
models show highly scattered patterns and the derived copula parameters (Figure 2d are relatively
low with values close to zero.

From around 25◦ north and south, the patterns are getting more stable as more than 200 pairs
can be used and the vegetation is less dense. For mid-latitude regions over large parts of the Eurasian
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continent and the eastern part of North America, the Frank copula is the most appropriate model;
the AMH-model is identified especially over the higher latitudes over the North American continent
and Siberia. However, especially the Gumbel-copula does not appear over larger areas, but rather
scattered across the globe. Interestingly, the Gaussian and FGM-copula appear only in a very limited
number of pixels.
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Figure 2. (a) Number of simultaneous (within six hours) retrievals from SMOS and SMAP Enhanced
(SMAP_E) during the period April 2015–March 2018 in every 9 km grid cell. (b) Rank correlation
coefficient Kendall’s τ between daily SMOS and SMAP_E brightness temperatures. (c) Most likely
copula model from the Bayesian copula selection. (d) Copula parameter θ for the most likely copula
model. FGM, Farlie–Gumbel–Morgenstern; AMH, Ali–Mikhail–Haq.
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The spatial dependency of the copula types is not yet fully understood. However, as there are
significantly larger continuous copula-patterns over the higher latitudes, we assume that the scattered
results around the Equator are mainly due to the relatively low number of samples. This leads to
less robust estimates of the tails of the marginal distributions from SMAP_E and SMOS. In terms of
copulas, however, the regions at the edges of the marginals are extremely important as one of the
biggest differences of the copula models is the description of tail dependencies. Similar to, e.g., the
correlation coefficient from a very small number of samples, the fitted copula model can change due to
minor differences in the brightness temperatures at adjacent locations. However, as both SMOS and
SMAP are still in service, it is planned to extend the calibration period in the future to increase the
number of pairs and therefore obtain more robust results, especially over the low-latitude regions.

By definition, the patterns of Kendall’s τ (Figure 2b) and the copula parameter θ (Figure 2d) are
very similar. The high-correlation regions across North and South America, as well as Eurasia also
show relatively high copula parameters. Again, low parameters can be observed especially over the
tropical rainforest, but also over the high latitudes. Over these regions, the AMH-copula is usually
identified as the best model with parameters around 0.7. As the AMH-copula parameter is bound
between −1 and 1, such values still indicate a high relationship between SMAP_E and SMOS and
correspond to rank correlation coefficients of around 0.5.

4.2. Comparison of SMOS, SMAP_E and CoSMOP

The final daily CoSMOP product is provided at 9 km resolution for the period April 2010–March
2018. Figure 3 shows 10-day averaged Tbs from CoSMOP, SMAP_E and SMOS during the period from
1 to 10 January 2013 and 2017 (Northern Hemispheric (NH) winter, left column) and from 1 to 10 July
2013 and 2017 (Southern Hemispheric (SH) winter, right column). At the global scale, there are no
significant differences between the three products. The derived fields agree very well in terms of their
patterns and magnitudes. In some regions, the Tbs of CoSMOP tend to slightly lower values compared
to the other two products. This can be seen especially over North America and the low-temperature
regions in the southeastern regions and central west coast of South America. The same holds true for
the SH-winter fields.

On the global maps of Figure 3, the improvement in scale between 9 km SMAP_E and CoSMOP
compared to the coarser 25 km SMOS fields is not visible. For comparison, Figure 4 shows Tbs over
the CONUS domain only. During January, the patterns and magnitudes from SMAP_E and SMOS are
again very similar with low values of 180 K and less especially west of the Sierra Nevada, the region
around the Salt Lake and along the Mississippi River. In July, high values can be observed across the
whole USA, while the SMOS records are slightly higher than the SMAP_E Tbs.

Besides the slightly lower values, the 9 km fields from CoSMOP and SMAP_E show slightly
smoother patterns than the original SMOS data. However, SMAP was developed to provide a spatial
resolution of 36 km, and the used 9 km SMAP_E product is a result of an interpolation. Although the
Backus–Gilbert interpolation is known to be a robust approach, the interpolative character is still visible
in SMAP_E data and therefore also in the CoSMOP product with a similar level of detail. However,
even the smoother patterns can cause large differences if, e.g., derived soil moisture estimates are used
for hydrological modeling.

When comparing the CoSMOP fields during both the validation and calibration periods, it
becomes evident that the data fusion successfully improves the spatial resolution and magnitudes
of SMOS-derived Tbs also during the pre-SMAP period, which, in the end, provides a consistent
time-series of CoSMOP Tbs from 2010 to the present.

In order to analyze the uncertainty of the CoSMOP brightness temperatures, Figure 5 shows the
10-day averaged standard deviations (i.e., the square root of the average variances) of the CoSMOP-Tbs
for two different periods in the NH-winter and SH-winter. These standard deviations describe the
spread of the conditional random samples and by that the width of the conditional copula PDFs
(Section 3.5). Usually, large copula parameters indicate a high level of dependency, which finally result
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in narrow conditional distributions and small standard deviations. Figure 5 strongly resembles the
correlation patterns in Figure 2 with low values, especially over the tropical rainforests. The largest
standard deviations can be observed over the vast African deserts. Here, the low correlation, together
with low Frank-copula parameters, clearly indicate a high level of uncertainty in the CoSMOP product.
Over most other regions including the CONUS-domain, the standard deviation is between 2 K and 6 K.
Based on the natural magnitudes and dynamics of Tbs, such values can be expected. Nevertheless,
it needs to be further investigated if and how the spread in the conditional random samples can be
decreased in order to improve the sharpness of the CoSMOP-Tbs.
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Figure 3. Global 10-day average brightness temperatures from CoSMOP, SMOS (interpolated to 9 km)
and SMAP_E, computed from 1–10 January 2013 and 2017 (left column) and from 1–10 July 2013 and
2017 (right column), respectively.
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Figure 4. 10-day average brightness temperatures from CoSMOP, SMOS, and SMAP_E, computed
from 1–10 January 2013 and 2017 (left column) and from 1–10 July 2013 and 2017 (right column),
respectively, for the Contiguous United States (CONUS) domain.
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Figure 5. Ten-day averaged standard deviations from 500 conditional random samples per day between
1–10 January 2017 (left) and 1–10 July 2017 (right), respectively.

In contrast to the clear NH- and SH-winter signals in Figure 3, the standard deviations show only
small temporal variations. There are small deviations, e.g., over South Africa or Australia, but most
large-scale patterns remain similar. This also indicates that for most regions, the uncertainty does not
depend too much on the chosen period and remains rather constant.

4.3. Comparison against Brightness Temperatures Simulated over SCAN Stations

Figure 6 shows the RMSE between CoSMOP and L-MEB forward simulated Tb over SCAN sites
and the improvement compared to the original SMOS data between the period April 2010 and March
2015. The average RMSE and median NSE (We use the median here due to the usually highly skewed
distribution of NSE-values. The mean would give a negatively-distorted view due to several negative
values.) during the two validation periods over all stations and the pre-defined subset are depicted in
Table 1. Figure 7 shows scatter and boxplots of the RMSE and NSE between SMOS, SMAP_E, CoSMOP
and L-MEB, where the colors depict the ensemble of all stations (blue) and the pre-defined subset with
continuous records (red).

Table 1. Average performance (median NSE and mean RMSE) between SMOS-, SMAP_E- and
CoSMOP-derived daily brightness Temperatures (Tbs) as compared to L-Band Microwave Emission of
the Biosphere Model (L-MEB) simulations over 149 SCAN sites for a single-mission period (top) and
a dual-mission period (bottom); the values in brackets are the metrics over 53 stations with almost
continuous records.

Period Dataset NSE RMSE

Single-mission period SMOS −0.05 (−0.03) 15.85 (15.14)
CoSMOP 0.20 (0.32) 13.69 (13.20)

SMOS 0.09 (0.21) 14.26 (13.97)
Dual-mission period CoSMOP 0.30 (0.35) 12.21 (12.18)

SMAP_E 0.44 (0.56) 13.48 (13.05)

Over 142 out of the 149 stations and within both validation periods, CoSMOP shows significantly
better results compared to SMOS (see Figure 6 and Table 1). Overall, the mean RMSE from SMOS
during the single mission period over all and the selected stations can be reduced from 15.85 K to
13.69 K and from 15.14 K to 13.20 K, respectively. Over some stations, the RMSE from CoSMOP is
even more than 40% lower compared to SMOS. The same holds true for the median NSE, which can
be improved from around 0–0.2 and 0.32 for all and the selected stations, respectively. Besides the
improvement of the average performance, the spread of the RMSE and NSE values from CoSMOP
(depicted by the length of the whiskers in Figure 7) is much lower compared to SMOS. Therefore, it
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can be assumed that the Tbs from CoSMOP have much more homogeneous magnitudes compared to
SMOS and thus provide more consistent estimates.

0 10 20 30

a) RMSE (K)

0 20 40

b) Relative change of the RMSE (%)

Figure 6. (a) RMSE between CoSMOP and L-MEB during the period April 2010 and March 2015;
(b) percentage changes between the RMSEs from SMOS and CoSMOP with respect to the RMSE from
SMOS (positive values indicate an improvement compared to SMOS).

The metrics in Table 1 indicate that the performance during the dual mission period is slightly
better compared to the pre-SMAP-period. The RMSE from SMOS decreases by around 1.5 K from
15.85 K to 14.26 K and from 15.14 K to 13.97 K for all and the selected stations, respectively. The same
holds true for the NSE, which increases from around 0–0.09 and 0.21. The level of improvement
from SMOS to CoSMOP, however, is very similar during both periods. The RMSE (NSE) is generally
decreased (increased) by around 2 K (0.2). This is confirmed by Figure 8, which shows the 10-day
averaged RMSE from SMOS, SMAP_E and CoSMOP with respect to L-MEB over the 53 selected
stations during the period 2010–2018. In general, the temporal dynamics from all three satellite-based
products are comparable. However, there is a significantly lower error level in CoSMOP compared to
SMOS. Especially during 2010/2011, there are distinct peaks in the SMOS errors. Even if these peaks
are still visible in CoSMOP, the magnitudes are much lower. The errors from CoSMOP and SMAP_E
(from April 2015 onward) are comparable, even though CoSMOP shows a slight improvement. Overall,
there is no obvious seasonality of the errors.

According to Figure 6, there is no clear pattern or local dependency of the improved performance.
This is also reflected by the similar level of improvement between SMOS and CoSMOP from all stations
and the pre-defined subset (Table 1). However, an analysis of the soil types of all the station data
might give more insight into connections between the local (site) characteristics and the performance
of CoSMOP. This will be evaluated in future studies.

The level of further improvement does not significantly depend on the identified copula. Table 2
shows the average root mean squared error over all stations in the CONUS region with the same
copulas. For the reduced station number with 80% data availability, the metrics may not be statistically
sound. Nevertheless, at least for the locations where the Gumbel copula is identified, the RMSE of
SMOS is higher compared to the other locations, and CoSMOP shows an improvement of around 3 K
during both validation periods.



Remote Sens. 2018, 10, 1842 18 of 26

Val.

RMSE

0

10

20

30

40

R
M

S
E

 C
o

S
M

O
P

 v
s
. 

L
−

M
E

B
 (

K
)

0 10 20 30 40

RMSE SMOS vs. L−MEB (K)

Cal.

0

10

20

30

40

R
M

S
E

 (
K

)

S
M

O
S

C
o

S
M

O
P

S
M

A
P

Val.

NSE

−3

−2

−1

0

1

N
S

E
 C

o
S

M
O

P
 v

s
. 

L
−

M
E

B
 (

 )

−3 −2 −1 0 1

NSE SMOS vs. L−MEB [ ]

Cal.

−3

−2

−1

0

1

N
S

E
 (

 )

S
M

O
S

C
o

S
M

O
P

S
M

A
P

Figure 7. Root mean squared error (top) and Nash–Sutcliffe efficiency (bottom) from SMOS- and
CoSMOP-derived daily Tbs with respect to the L-MEB forward simulations during the period April
2010–March 2015 (Val.) and April 2015–March 2018 (Cal.), respectively. Each station is represented
by a blue or red dot, while the x- and y-values are given by the RMSE- and NSE-values from the
SMOS and CoSMOP Tbs, respectively. Dots below (above) the diagonal line depict stations where
improvements can be observed for the RMSE (NSE), respectively. The red dots are the stations that have
a (more or less) continuous record during the whole period April 2010–March 2018 (see Figure 1). The
corresponding box-and-whisker plots show the median (black thin line), the 25th and 75th percentile
(top and bottom of the box) and the tails of the distributions (length of the whiskers) for the ensemble
of all (blue) and the continuous (red) stations.
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Table 2. Average RMSE (K) for each copula over all SCAN stations in the CONUS region. The number
in the brackets shows the number of stations where a specific copula has been identified. The two
top rows show the values for the validation (i.e., pre-SMAP) period, while the three bottom rows
correspond to the calibration period.

Period Dataset Gumbel (38) Clayton (33) Frank (46) AMH (32)

Single-mission period SMOS 17.32 13.84 16.53 15.20
CoSMOP 14.39 11.88 14.61 13.42

Dual-mission period
SMOS 15.66 12.87 14.85 13.22

CoSMOP 12.65 11.10 13.18 11.47
SMAP_E 13.90 12.70 14.28 12.66

0

10

20

30

R
M

S
E

 (
K

)

2010 2011 2012 2013 2014 2015 2016 2017

SMOS CoSMOP SMAP

Figure 8. Temporal evolution of the average root mean squared error over 53 selected stations.

One of the main reasons for this generally improved performance is the reduction of the variance
in the CoSMOP Tbs due to the copula fitting, which is generally too high in the original SMOS records.
The copula describes the signal dependency between SMOS and SMAP_E if we assume the noise
in the two original products to be uncorrelated. Hence, the conditional random samples are based
on the noise-free part of the Tbs from SMOS and SMAP_E, which leads to a lower noise level in the
CoSMOP-Tbs. Another reason is the higher spatial resolution of 9 km. We assume a radius of 9 km
around each pixel, from which we then average the satellite Tbs. Thus, the spatially higher resolved
fields reflect the local characteristics more reasonably than the original 25 km pixels from SMOS. This
higher spatial resolution together with more homogeneous patterns and consistent Tb-dynamics leads
to more reliable and reasonable Tb estimates. Especially when the derived brightness temperatures
are transformed to soil moisture, the more consistent CoSMOP product should provide superior
performance compared to SMOS when, e.g., used as input for hydrological modeling approaches.

5. Conclusions

A copula-based approach for merging brightness temperatures from SMOS and SMAP enhanced
is developed and analyzed for generating the high resolution (9 km), long-term (2010–2018),
global copula-combined SMOS-SMAP_E product CoSMOP. In particular, the approach exploits
the joint temporal dependency structure between the two satellite-based datasets for constructing
an SMAP_E-like time-series even for pre-SMAP periods from SMOS. This statistical consistency
incorporates both a better spatial resolution and a significantly lower noise level. The copula-based
approach allows for high flexibility in terms of the underlying marginal distributions and the joint
dependency structure and is therefore proposed for global-scale data fusion applications where
statistical requirements (e.g., normal distribution of the samples) are often difficult to achieve.

A joint analysis of the rank correlation parameter Kendall’s τ, the estimated copula model and
the corresponding parameter θ shows that the reliability of the derived CoSMOP product depends
significantly on (a) the latitude and (b) the vegetation density. In general, especially the mid- to
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high-latitudes allow an estimation of the mandatory parameters with 300–950 samples. Over these
locations, large contiguous patterns of similar copula models, relatively high correlation coefficients
and, depending on the identified copula, high copula parameters can be derived. Over low-latitudes
and dense vegetation areas (e.g., tropical rain forest), the correlation between SMOS and SMAP_E is
much lower, which also results in low copula parameters and highly scattered copula models.

As both SMOS and SMAP are still in operation, it is planned to continuously extend the CoSMOP
time series. Hence, the number of simultaneous radiometer-based observations will be increased in
the future, which also will improve the reliability of the CoSMOP brightness temperatures. At the
moment, especially the CoSMOP-Tbs over mid- to high-latitudes are assumed to be robust estimates,
as they are based on a reasonable number of samples.

This is confirmed by the comparison against simulated brightness temperatures over SCAN
sites driven by in situ measurements within the L-MEB model. For analyzing both the spatial and
temporal consistency of CoSMOP, the derived Tbs are compared against 149 stations across the
whole CONUS-domain and 53 pre-defined stations with almost continuous records during the period
2010–2018. In general, the root mean squared error can be improved for 142 out of the 149 stations by
2 K, which corresponds to around 15%. The same holds true for the Nash–Sutcliffe efficiency, which
is increased from around 0–0.2 and 0.3 for all and the pre-defined ensemble of stations, respectively.
The improvements seem to be independent of the region and also the identified copula. Nevertheless,
the locations where the Gumbel-copula is identified show slightly larger errors compared to other
regions. Thus, it will be part of future studies to see if there is a relationship between the CoSMOP
performance and the study area (e.g., due to specific climatic conditions) or the identified copula. It
will be further investigated if the performance of CoSMOP can be increased, e.g., by incorporating
more copula models or by merging, e.g., the data from both SMOS’ and SMAP’s ascending and
descending nodes, which will significantly increase the number of samples at the expense of the
temporal representativeness of the derived statistics. While this study focuses on the global scale and
the introduction of the CoSMOP product in general, it will be part of future studies to evaluate the
performance of our brightness temperatures against data from field campaigns like, e.g., the SMAP
Validation Experiment 2012 (SMAPVEX12).

On basis of our merged CoSMOP brightness temperature time series, a number of higher level
products can be generated. In addition to soil freeze-thaw indication, also a global soil moisture time
series can be generated by subsequent application of the Single-Channel Algorithm (SCA) [95] as
the SMAP Level 2 processor. The chance to use alternative soil moisture retrieval approaches, e.g.,
the Dual-Channel Algorithm (DCA), is still persistent. Subsequent CoSMOP studies will focus on
such a transformation to, e.g., soil moisture and the performance gain compared to the original SMOS
estimates. Our study is the first step towards long-term, high-resolution and consistent time-series of
remote sensing-based brightness temperatures, which ultimately have the potential to improve our
knowledge about many aspects of the global climate system, including the long-term evolution of
global-scale soil moisture.

The CoSMOP brightness temperatures are freely available (after registration) at https://thredds.
imk-ifu.kit.edu:9670 and https://doi.pangaea.de/10.1594/PANGAEA.896154.
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Appendix A. Copula Selection

Table A1. Copulas tested in this study including the definition and the ranges of the copula parameter
θ and the corresponding rank correlation coefficient τ.

Copula Cθ (u, v) θ τ

Clayton
(

u−θ + v−θ − 1
)− 1

θ
(0, ∞) [0, 1]

Frank − 1
θ ln

(
1 + (e−θu−1)(e−θv−1)

e−θ−1

)
(−∞, ∞) \0 [−1, 1] \0

Gumbel exp
(
−
(
(− ln u)θ + (− ln v)θ

) 1
θ

)
[1, ∞) \0 [0, 1]

FGM uv + θuv (1− u) (1− v) [−1, 1]
[
− 2

9 , 2
9

]
AMH uv

1− θ (1− u) (1− v) [−1, 1]
[
−0.181726, 1

3

]
Gaussian 1

2π
√

1− θ2

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞
exp

2θsω− s2 −ω2

2
(

1− θ2
)

 [−1, 1] [−1, 1]
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