000857700 001__ 857700
000857700 005__ 20240712100947.0
000857700 0247_ $$2doi$$a10.1016/j.scib.2018.07.001
000857700 0247_ $$2ISSN$$a1001-6538
000857700 0247_ $$2ISSN$$a1861-9541
000857700 0247_ $$2ISSN$$a2095-9273
000857700 0247_ $$2ISSN$$a2095-9281
000857700 0247_ $$2WOS$$aWOS:000442738700014
000857700 037__ $$aFZJ-2018-06672
000857700 082__ $$a500
000857700 1001_ $$0P:(DE-Juel1)173726$$aTan, Zhaofeng$$b0
000857700 245__ $$aExplicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities
000857700 260__ $$a[S.l.]$$bScience China Press$$c2018
000857700 3367_ $$2DRIVER$$aarticle
000857700 3367_ $$2DataCite$$aOutput Types/Journal article
000857700 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542896694_6135
000857700 3367_ $$2BibTeX$$aARTICLE
000857700 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857700 3367_ $$00$$2EndNote$$aJournal Article
000857700 520__ $$aIn the troposphere, ozone is a harmful gas compound to both human health and vegetation. Ozone is produced from the reaction of NOx (NO + NO2) and VOCs (volatile organic compounds) with light. Due to the highly nonlinear relationships between ozone and its precursors, proper ozone mitigation relies on the knowledge of chemical mechanisms. In this study, an observation-based method is used to simulate ozone formation and elucidate its controlling factors for a rural site on the North China Plain. The instantaneous ozone production rate is calculated utilizing a box model using the dataset obtained from the Wangdu campaign. First, the model was operated in a time-dependent mode to calculate the ozone production rate at each time stamp. The calculated ozone formation rate showed a diurnal average maximum value of 17 ppbv/h (1-h diurnal averaged). The contribution of individual peroxy radicals to ozone production was analyzed. In addition, the functional dependence of calculated P(O3) reveals that ozone production was in a NOx-limited regime during the campaign. Furthermore, the missing peroxy radical source will further extend NOx-limited conditions to earlier in the day, making NOx limitation dominate more of a day than the current chemical model predicts. Finally, a multiple scenarios mode, also known as EKMA (empirical kinetic modeling approach), was used to simulate the response of P(O3) to the imaginary change in precursor concentrations. We found that ozone production was in the NOx-limited region. However, the use of NO2 measured by the molybdenum converter and/or the absence of a peroxy radical source in the current chemical model could over-emphasize the VOC-limited effect on ozone production.
000857700 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857700 588__ $$aDataset connected to CrossRef
000857700 7001_ $$0P:(DE-Juel1)6776$$aLu, Keding$$b1$$eCorresponding author
000857700 7001_ $$0P:(DE-HGF)0$$aDong, Huabin$$b2
000857700 7001_ $$0P:(DE-HGF)0$$aHu, Min$$b3
000857700 7001_ $$0P:(DE-Juel1)6775$$aLi, Xin$$b4
000857700 7001_ $$0P:(DE-HGF)0$$aLiu, Yuhan$$b5
000857700 7001_ $$0P:(DE-HGF)0$$aLu, Sihua$$b6
000857700 7001_ $$0P:(DE-HGF)0$$aShao, Min$$b7
000857700 7001_ $$0P:(DE-HGF)0$$aSu, Rong$$b8
000857700 7001_ $$0P:(DE-HGF)0$$aWang, Haichao$$b9
000857700 7001_ $$0P:(DE-HGF)0$$aWu, Yusheng$$b10
000857700 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b11
000857700 7001_ $$0P:(DE-HGF)0$$aZhang, Yuanhang$$b12$$eCorresponding author
000857700 773__ $$0PERI:(DE-600)2816140-3$$a10.1016/j.scib.2018.07.001$$gVol. 63, no. 16, p. 1067 - 1076$$n16$$p1067 - 1076$$tScience bulletin$$v63$$x2095-9273$$y2018
000857700 8564_ $$uhttps://juser.fz-juelich.de/record/857700/files/1-s2.0-S2095927318303177-main.pdf$$yRestricted
000857700 8564_ $$uhttps://juser.fz-juelich.de/record/857700/files/1-s2.0-S2095927318303177-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857700 909CO $$ooai:juser.fz-juelich.de:857700$$pVDB:Earth_Environment$$pVDB
000857700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173726$$aForschungszentrum Jülich$$b0$$kFZJ
000857700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6775$$aForschungszentrum Jülich$$b4$$kFZJ
000857700 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b11$$kFZJ
000857700 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857700 9141_ $$y2018
000857700 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857700 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857700 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI BULL : 2017
000857700 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857700 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857700 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857700 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857700 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857700 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857700 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857700 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857700 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000857700 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000857700 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857700 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857700 980__ $$ajournal
000857700 980__ $$aVDB
000857700 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857700 980__ $$aUNRESTRICTED
000857700 981__ $$aI:(DE-Juel1)ICE-3-20101013