000857751 001__ 857751
000857751 005__ 20240712101041.0
000857751 0247_ $$2doi$$a10.5194/gmd-2017-220
000857751 0247_ $$2ISSN$$a1991-9611
000857751 0247_ $$2ISSN$$a1991-962X
000857751 0247_ $$2ISSN$$a=
000857751 0247_ $$2ISSN$$aGeoscientific
000857751 0247_ $$2ISSN$$amodel
000857751 0247_ $$2ISSN$$adevelopment
000857751 0247_ $$2ISSN$$adiscussions
000857751 0247_ $$2Handle$$a2128/20169
000857751 0247_ $$2altmetric$$aaltmetric:26438871
000857751 037__ $$aFZJ-2018-06719
000857751 082__ $$a910
000857751 1001_ $$0P:(DE-Juel1)166191$$aWu, Xueran$$b0$$eCorresponding author$$ufzj
000857751 245__ $$aThe degree of freedom for signal assessment of measurement networks for joint chemical state and emission analysis
000857751 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2018
000857751 3367_ $$2DRIVER$$aarticle
000857751 3367_ $$2DataCite$$aOutput Types/Journal article
000857751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1542971733_17584
000857751 3367_ $$2BibTeX$$aARTICLE
000857751 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857751 3367_ $$00$$2EndNote$$aJournal Article
000857751 520__ $$aThe Degree of Freedom for Signal (DFS) is generalized and applied to estimate the potential observability of observation networks for augmented model state and parameter estimations. The control of predictive geophysical model systems by measurements is dependent on a sufficient observational basis. Control parameters may include prognostic state variables, mostly the initial values, and insufficiently known model parameters, to which the simulation is sensitive. As for chemistry-transport models, emission rates are at least as important as initial values for model evolution control. Extending the optimisation parameter set must be met by observation networks, which allows for controlling the entire optimisation task. In this paper, we introduce a DFS based approach with respect to address both, emission rates and initial value observability. By applying a Kalman smoother, a quantitative assessment method on the efficiency of observation configurations is developed based on the singular value decomposition. For practical reasons an ensemble based version is derived for covariance modelling. The observability analysis tool can be generalized to additional model parameters.
000857751 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x0
000857751 588__ $$aDataset connected to CrossRef
000857751 7001_ $$0P:(DE-Juel1)129194$$aElbern, Hendrik$$b1$$ufzj
000857751 7001_ $$0P:(DE-HGF)0$$aJacob, Birgit$$b2
000857751 773__ $$0PERI:(DE-600)2456729-2$$a10.5194/gmd-2017-220$$gp. 1 - 29$$p1 - 29$$tGeoscientific model development discussions$$v220$$x1991-962X$$y2018
000857751 8564_ $$uhttps://juser.fz-juelich.de/record/857751/files/gmd-2017-220.pdf$$yOpenAccess
000857751 8564_ $$uhttps://juser.fz-juelich.de/record/857751/files/gmd-2017-220.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857751 909CO $$ooai:juser.fz-juelich.de:857751$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166191$$aForschungszentrum Jülich$$b0$$kFZJ
000857751 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129194$$aForschungszentrum Jülich$$b1$$kFZJ
000857751 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x0
000857751 9141_ $$y2018
000857751 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857751 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857751 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857751 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857751 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000857751 9801_ $$aFullTexts
000857751 980__ $$ajournal
000857751 980__ $$aVDB
000857751 980__ $$aUNRESTRICTED
000857751 980__ $$aI:(DE-Juel1)IEK-8-20101013
000857751 981__ $$aI:(DE-Juel1)ICE-3-20101013