001     857751
005     20240712101041.0
024 7 _ |a 10.5194/gmd-2017-220
|2 doi
024 7 _ |a 1991-9611
|2 ISSN
024 7 _ |a 1991-962X
|2 ISSN
024 7 _ |a =
|2 ISSN
024 7 _ |a Geoscientific
|2 ISSN
024 7 _ |a model
|2 ISSN
024 7 _ |a development
|2 ISSN
024 7 _ |a discussions
|2 ISSN
024 7 _ |a 2128/20169
|2 Handle
024 7 _ |a altmetric:26438871
|2 altmetric
037 _ _ |a FZJ-2018-06719
082 _ _ |a 910
100 1 _ |a Wu, Xueran
|0 P:(DE-Juel1)166191
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The degree of freedom for signal assessment of measurement networks for joint chemical state and emission analysis
260 _ _ |a Katlenburg-Lindau
|c 2018
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1542971733_17584
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Degree of Freedom for Signal (DFS) is generalized and applied to estimate the potential observability of observation networks for augmented model state and parameter estimations. The control of predictive geophysical model systems by measurements is dependent on a sufficient observational basis. Control parameters may include prognostic state variables, mostly the initial values, and insufficiently known model parameters, to which the simulation is sensitive. As for chemistry-transport models, emission rates are at least as important as initial values for model evolution control. Extending the optimisation parameter set must be met by observation networks, which allows for controlling the entire optimisation task. In this paper, we introduce a DFS based approach with respect to address both, emission rates and initial value observability. By applying a Kalman smoother, a quantitative assessment method on the efficiency of observation configurations is developed based on the singular value decomposition. For practical reasons an ensemble based version is derived for covariance modelling. The observability analysis tool can be generalized to additional model parameters.
536 _ _ |a 243 - Tropospheric trace substances and their transformation processes (POF3-243)
|0 G:(DE-HGF)POF3-243
|c POF3-243
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Elbern, Hendrik
|0 P:(DE-Juel1)129194
|b 1
|u fzj
700 1 _ |a Jacob, Birgit
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.5194/gmd-2017-220
|g p. 1 - 29
|0 PERI:(DE-600)2456729-2
|p 1 - 29
|t Geoscientific model development discussions
|v 220
|y 2018
|x 1991-962X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857751/files/gmd-2017-220.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857751/files/gmd-2017-220.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857751
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166191
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129194
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-243
|2 G:(DE-HGF)POF3-200
|v Tropospheric trace substances and their transformation processes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21