000857762 001__ 857762
000857762 005__ 20220930130201.0
000857762 0247_ $$2doi$$a10.1039/C8NR04545C
000857762 0247_ $$2ISSN$$a2040-3364
000857762 0247_ $$2ISSN$$a2040-3372
000857762 0247_ $$2pmid$$apmid:30226243
000857762 0247_ $$2WOS$$aWOS:000454327500036
000857762 0247_ $$2altmetric$$aaltmetric:48634782
000857762 037__ $$aFZJ-2018-06730
000857762 082__ $$a600
000857762 1001_ $$00000-0002-8239-0043$$aWrana, Dominik$$b0$$eCorresponding author
000857762 245__ $$aA bottom-up process of self-formation of highly conductive titanium oxide (TiO) nanowires on reduced SrTiO 3
000857762 260__ $$aCambridge$$bRSC Publ.$$c2019
000857762 3367_ $$2DRIVER$$aarticle
000857762 3367_ $$2DataCite$$aOutput Types/Journal article
000857762 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1546498494_29398
000857762 3367_ $$2BibTeX$$aARTICLE
000857762 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857762 3367_ $$00$$2EndNote$$aJournal Article
000857762 520__ $$aReduced titanium oxide structures are regarded as promising materials for various catalytic and optoelectronic applications. There is thus an urgent need for developing methods of controllable formation of crystalline nanostructures with tunable oxygen nonstoichiometry. We introduce the Extremely Low Oxygen Partial Pressure (ELOP) method, employing an oxygen getter in close vicinity to an oxide during thermal reduction under vacuum, as an effective bottom-up method for the production of nanowires arranged in a nanoscale metallic network on a SrTiO3 perovskite surface. We demonstrate that the TiO nanowires crystallize in a highly ordered cubic phase, where single nanowires are aligned along the main crystallographic directions of the SrTiO3 substrate. The dimensions of the nanostructures are easily tunable from single nanometers up to the mesoscopic range by varying the temperature of reduction. The interface between TiO and SrTiO3 (metal and insulator) was found to be atomically sharp providing the unique possibility of the investigation of electronic states, especially since the high conductivity of the TiO nanostructures is maintained after room temperature oxidation. According to the growth model we propose, TiO nanowire formation is possible due to the incongruent sublimation of strontium and crystallographic shearing, triggered by the extremely low oxygen partial pressure (ELOP). The controlled formation of conductive nanowires on a perovskite surface holds technological potential for implementation in memristive devices, organic electronics, or for catalytic applications, and provides insight into the mechanism of nanoscale phase transformations in metal oxides. We believe that the ELOP mechanism of suboxide formation is suitable for the formation of reduced suboxides on other perovskite oxides and for the broader class of transition metal oxides.
000857762 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000857762 588__ $$aDataset connected to CrossRef
000857762 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b1
000857762 7001_ $$00000-0002-3196-7244$$aJany, Benedykt R.$$b2
000857762 7001_ $$00000-0002-6528-8821$$aKryshtal, Oleksandr$$b3
000857762 7001_ $$00000-0002-1875-1588$$aCempura, Grzegorz$$b4
000857762 7001_ $$00000-0001-9269-8271$$aKruk, Adam$$b5
000857762 7001_ $$00000-0002-9684-2127$$aIndyka, Paulina$$b6
000857762 7001_ $$0P:(DE-HGF)0$$aSzot, Krzysztof$$b7
000857762 7001_ $$00000-0002-6931-3545$$aKrok, Franciszek$$b8
000857762 773__ $$0PERI:(DE-600)2515664-0$$a10.1039/C8NR04545C$$gp. 10.1039.C8NR04545C$$n1$$p89-97$$tNanoscale$$v11$$x2040-3372$$y2019
000857762 8564_ $$uhttps://juser.fz-juelich.de/record/857762/files/SL37237%20C00277.pdf
000857762 8564_ $$uhttps://juser.fz-juelich.de/record/857762/files/c8nr04545c.pdf$$yRestricted
000857762 8564_ $$uhttps://juser.fz-juelich.de/record/857762/files/SL37237%20C00277.pdf?subformat=pdfa$$xpdfa
000857762 8564_ $$uhttps://juser.fz-juelich.de/record/857762/files/c8nr04545c.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857762 8767_ $$8SL37237$$92018-12-20$$d2018-12-20$$eCover$$jZahlung erfolgt$$pC8NR04545C$$z1000 GBP
000857762 909CO $$ooai:juser.fz-juelich.de:857762$$pOpenAPC$$pVDB$$popenCost
000857762 9101_ $$0I:(DE-HGF)0$$60000-0002-8239-0043$$aExternal Institute$$b0$$kExtern
000857762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
000857762 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000857762 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000857762 9141_ $$y2019
000857762 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000857762 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOSCALE : 2017
000857762 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857762 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857762 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857762 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857762 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857762 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857762 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857762 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857762 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNANOSCALE : 2017
000857762 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000857762 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000857762 980__ $$ajournal
000857762 980__ $$aVDB
000857762 980__ $$aI:(DE-Juel1)PGI-7-20110106
000857762 980__ $$aI:(DE-82)080009_20140620
000857762 980__ $$aAPC
000857762 980__ $$aUNRESTRICTED
000857762 9801_ $$aAPC