001 | 857783 | ||
005 | 20210129235710.0 | ||
024 | 7 | _ | |a 2128/20192 |2 Handle |
037 | _ | _ | |a FZJ-2018-06750 |
100 | 1 | _ | |a Diaz, Sandra |0 P:(DE-Juel1)165859 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |c Jülich |d 2018-10-08 - 2018-10-09 |w Germany |
245 | _ | _ | |a Training course "Porting code from Matlab to Python" |
260 | _ | _ | |c 2018 |
336 | 7 | _ | |a lecture |2 DRIVER |
336 | 7 | _ | |a Generic |0 31 |2 EndNote |
336 | 7 | _ | |a MISC |2 BibTeX |
336 | 7 | _ | |a Lecture |b lecture |m lecture |0 PUB:(DE-HGF)17 |s 1586173003_15080 |2 PUB:(DE-HGF) |x Other |
336 | 7 | _ | |a LECTURE_SPEECH |2 ORCID |
336 | 7 | _ | |a Text |2 DataCite |
520 | _ | _ | |a Python is becoming a popular language for scientific applications and is increasingly used for high performance computing. In this course we want to introduce Matlab programmers to the usage of Python. Matlab and Python have a comparable language philosophy, but Python can offer better performance using its optimizations and parallelization interfaces. Python also increases the portability and flexibility (interaction with other open source and proprietary software packages) of solutions, and can be run on supercomputing resources without high licensing costs.The training course will be divided into three stages: First, attendants will learn how to do a direct translation of language concepts from Matlab to Python. Then, optimization of scripts using more Pythonic data structures and functions will be shown. Finally, code will be taken to the supercomputers where basic parallel programming (MPI) will be used to exploit parallelism in the computation.The course will focus on numerical and statistical analysis as well as on image processing applications.This course involves theoretical and hands on sessions which will be guided by experts in Python, Matlab and High Performance Computing. Attendants are highly encouraged to bring their own Matlab scripts. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 1 |
536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |f SMHB |x 2 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 3 |
536 | _ | _ | |a Virtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B) |0 G:(DE-Juel1)BMBF-01GQ1504B |c BMBF-01GQ1504B |x 4 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 5 |
700 | 1 | _ | |a Deepu, Rajalekshmi |0 P:(DE-Juel1)158021 |b 1 |u fzj |
700 | 1 | _ | |a Peyser, Alexander |0 P:(DE-Juel1)161525 |b 2 |u fzj |
700 | 1 | _ | |a Klijn, Wouter |0 P:(DE-Juel1)168169 |b 3 |u fzj |
856 | 4 | _ | |u http://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2018/matlab-2-python-2018.html?nn=2222554 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Inroduction.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Introduction_Classes_Iterators.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S04_intro_numpy.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S12_Intro_mpi.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S6_Intro_tools.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Workflow2018.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Inroduction.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Introduction_Classes_Iterators.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S04_intro_numpy.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S12_Intro_mpi.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/S6_Intro_tools.pdf?subformat=pdfa |x pdfa |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/857783/files/Workflow2018.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:857783 |p openaire |p open_access |p VDB |p driver |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165859 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)158021 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)161525 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)168169 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2018 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a lecture |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|