
M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Session 6: Introduction to advanced
tools

October 9th, 2017 | Wouter Klijn

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Overview

• Versioning (GIT)

• Tests

• Types

• How to start testing

• Unittests

• Debugging

• pdb

• Interactive Development Invironments

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Git: Why

09/10/2017

https://www.slideshare.net/phpcodemonkey/introduction-to-
version-control-presentation

• Storage (backup) of source code file

• Who changed what when

• Undo / redo

• Facilitates working on multiple versions of a software

• Merge of changes from multiple developers

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Git

09/10/2017

• 70s software interface

• Command line with

‘intuitive‘ arguments

• Graphical user interfaces:

Tortoise git (Windows),

GitKraken (Linux)

• Integration in mature IDE’s:

PyCharm, Visual studio,

Eclipse

https://xkcd.com/1597/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Git

09/10/2017

• clone

• checkout

• add

• commit

• fetch

• pull

• push

• remote

• branch

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Testing

09/10/2017

• Automatic programs or checklist assessing the

correction functioning of software.

• Prevent introduction of errors when adding features.

• But also:

• Tests as documentation

• Leads to better design: loose coupling

• In larger projects, improved development speed

(mostly due to reduction in bugs to be solved)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Testing pyramid

09/10/2017

• Major types of tests:

• Manual testing

• Data driven delta

testing / regression

testing

• Component testing

• Unit testing

The concepts are fuzzy and there

is overlap and different names for

the same thing
http://willhamill.com/2013/08/12/automated-testing-and-
the-evils-of-ice-cream

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

How to start testing?

09/10/2017

• Writing down the manual tests you already do

• Doubles as documentation

• Create an data driven delta test

• Create test data

• Forces you to think about ‘user’ interactions

• Doubles as introductory how-to

• Pick a single important component and disconnect it

from the rest.

• And continue doing this till you end up with:

• Unit test for small parts of the code that do one and

only one thing.

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Python: unittest

09/10/2017

http://pythontesting.net/framework/unittest/unitte
st-introduction/

• Based on the xunit standard

• Setup -> test -> teardown

1. Create files, etc. needed to run the

component

1. Run individual function an test the

correct output eg:

• assertEqual

• assertTrue

• assertExceptionThrown

1. Delete used resources

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Python: unittest

09/10/2017

import unittest

def function(parameter):
return parameter

class TestSomething(unittest.TestCase):

def setUp(self):
pass

def test_fail(self):
self.assertEqual(function(13), 12)

def test_succes(self):
self.assertEqual(function(12), 12)

def tearDown(self):
pass

if __name__ == '__main__':
unittest.main()

wouter@WKLIJNWORK:/mnt/c/work$ python3 unittester.py
F.
==
FAIL: test_something_fail (__main__.TestSomething)
--
Traceback (most recent call last):

File "unittester.py", line 15, in test_fail
self.assertEqual(function(13), 12)

AssertionError: 13 != 12

--
Ran 2 tests in 0.001s

FAILED (failures=1)

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Debugging

09/10/2017

• Debug print statements

• Use binairy search to find the problem. If you

know your program this is often the fastest

• If the program is big, or not your own, it’s a

hard problem:

python –m pdb program.py

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Debugging: pdb

09/10/2017

Command action

n Execute the next command

enter Repeat the last command

q Hard exit (with a signal / exception)

p <var>,<var> Print the value of the variable

c Continue with program (until trace_point)

s Step into a function

r Continue till end of function

list <n1,n2> Print surrounding code, include (n1, n2)

https://pythonconquerstheuniverse.wordpress.com/2009/09/10/debugging-in-python/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Debugging: pdb cont.

09/10/2017

• PDB starts your program and halts at the first statement.

• For large programs you can add trace points:

import pdb

pdb.set_trace()

• Execution will drop into debugging mode

When doing interactive development:

• pdb.run(‘statement to evaluated’)

https://pymotw.com/2/pdb/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

Debugging: pdb advanced

09/10/2017

Interactive development:

• pdb.run(‘statement to evaluated’)

• Postmortem:

• pdb.pm()

“Debugging of the sys.last_backtrace”

• Could be use in combination with except

• For more in-depth information:

• https://pymotw.com/3/pdb/index.html

https://pymotw.com/2/pdb/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

IDE

09/10/2017

• The biggest difference between python and Matlab

is the Integrated Development Environment (IDE)

• Python is typically interacted with via code or

console.

• Selecting an IDE is an ‘important’ choice.

• It takes time to get use to a IDE

• Operating system

• Features

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

IDE

09/10/2017

• Spyder: MATLAB like interface

• Available on most operating systems

• Python centric

• Visual Studio: python development tools

• Windows

• Prepared for later C++ development (Cython)

• Eclipse JAVA based but supports most languages

• Available on most operating systems

• Prepared for later C++ development

• PyCharm. Python centric IDE

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

IDE: Spyder

09/10/2017
https://www.marsja.se/rstudio-like-python-ides-rodeo-spyder/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

IDE: Visual Studio

09/10/2017

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

IDE: Eclipse

09/10/2017

https://larjona.wordpress.com/2011/09/27/first-steps-with-python-and-eclipse-ide/

M
it
g
lie

d
 d

e
r

H
e
lm

h
o
lt
z
-G

e
m

e
in

s
c
h
a
ft

20

Thank you for your attention

References and further reading:

