
GOING FROM MATLAB TO PYTHON
A GENERIC WORKFLOW

08. OCTOBER 2018 I RAJALEKSHMI DEEPU,SANDRA DIAZ

WHERE TO START?
l Identify the type of computation you are performing

l Identify computational steps in your code

l Do basic profiling on your original Matlab code

l Identify input / output

l If you need parallel, think parallel from the beginning

08. October 2018 Seite 2

WHAT TO DO NEXT?
l Take one step at a time and translate the functionality

l Build a unit test which allows you to compare to known results => your
Matlab results

l Document your code as you write it

l Commit frequently

l Check the code performance

l Try to adhere to programming standards (PEP8): Python Enhancement
Proposal. (https://www.python.org/dev/peps/pep-0008/)

08. October 2018 Seite 3

HOW TO IMPLEMENT YOUR STEPS?

08. October 2018 Seite 4

l Each computation step has an input and an output

l Identify the interfaces among steps

l Identify the correct data structures in your computation

l Python provides a larger diversity of data structures (lists,
dictionaries, arrays, matrices, etc…)

HOW TO IMPLEMENT YOUR STEPS?

l Python has a large community of users. Look for modules which
can make your computation easier.

l If you use Matlab commands from a specific toolbox, look for
equivalent Python modules.

l Break down computation into functions, classes or even
modules.

l Always think about clean / reusable / maintainable code

08. October 2018 Seite 5

DEBUGGING

• Python DeBugger (pdb)
- Python’s interactive source code debugger
- Available as a module; import pdb

• Print statements
- Better to use with a filename and line number.

10 if x > 23:

11 print "Debugging: my_file.py, line 11"

12 print ”Hello!"

08. October 2018 Seite 6

08. October 2018 Seite 7

Thank you for your attention!

