000857789 001__ 857789
000857789 005__ 20240712113124.0
000857789 0247_ $$2doi$$a10.1002/ente.201800133
000857789 0247_ $$2ISSN$$a1920-4159
000857789 0247_ $$2ISSN$$a2194-4288
000857789 0247_ $$2ISSN$$a2194-4296
000857789 0247_ $$2WOS$$aWOS:000449676400021
000857789 037__ $$aFZJ-2018-06756
000857789 082__ $$a610
000857789 1001_ $$0P:(DE-HGF)0$$aDagger, Tim$$b0
000857789 245__ $$aComparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries - II. Full Cell Cycling and Postmortem Analyses
000857789 260__ $$a[S.l.]$$bWiley-VCH$$c2018
000857789 3367_ $$2DRIVER$$aarticle
000857789 3367_ $$2DataCite$$aOutput Types/Journal article
000857789 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1578577646_24602
000857789 3367_ $$2BibTeX$$aARTICLE
000857789 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857789 3367_ $$00$$2EndNote$$aJournal Article
000857789 520__ $$aWithin this 2nd part of a comparative study five flame retardant additives (FRs) as candidates for lithium ion battery (LIB) electrolytes are evaluated in terms of their electrochemical performance in order to investigate performance differences and their long‐term stability. FRs from four different phosphorus‐containing molecule classes, (namely tris(2,2,2‐trifluoroethyl)phosphate (TFP), tris(2,2,2‐trifluoroethyl)phosphite (TTFPi), bis(2,2,2‐trifluoroethyl)methylphosphonate (TFMP), (ethoxy)pentafluorocyclotriphosphazene (PFPN), (phenoxy)pentafluorocyclotriphosphazene (FPPN)) are investigated using MCMB graphite anode/NMC111 cathode full cells and cycled up to 501 times. A major part of the investigations focuses on the effect of different FRs on the first cycle performance, the raising additional resistance, the rate capability and the self‐discharge behavior of the cells. It is shown that the addition of fluorinated cyclophosphazenes (PFPN and FPPN) provides the best electrochemical performance among the evaluated additives. Postmortem investigations by gas chromatography‐mass spectrometry and scanning electron microscopy further validate the decomposition of TFP and TTFPi during prolonged cycling, thus explaining the detrimental impact on electrochemical performance. Hence, these additives are not suitable for application in LIB in terms of safety enhancement. In contrast, TFMP, PFPN and FPPN improve the electrolyte stability. The formation of typical decomposition products (e. g. dimethyl‐2,5‐dioxahexanedicarboxylate) that indicate severe electrolyte degradation, is avoided by using these additives.
000857789 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857789 588__ $$aDataset connected to CrossRef
000857789 7001_ $$0P:(DE-HGF)0$$aNiehoff, Philip$$b1
000857789 7001_ $$0P:(DE-HGF)0$$aLürenbaum, Constantin$$b2
000857789 7001_ $$00000-0002-3743-8837$$aSchappacher, Falko M.$$b3$$eCorresponding author
000857789 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
000857789 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.201800133$$gVol. 6, no. 10, p. 2023 - 2035$$n10$$p2023 - 2035$$tEnergy technology$$v6$$x2194-4288$$y2018
000857789 8564_ $$uhttps://juser.fz-juelich.de/record/857789/files/Dagger_et_al-2018-Energy_Technology.pdf$$yRestricted
000857789 8564_ $$uhttps://juser.fz-juelich.de/record/857789/files/Dagger_et_al-2018-Energy_Technology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857789 909CO $$ooai:juser.fz-juelich.de:857789$$pVDB
000857789 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000857789 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857789 9141_ $$y2019
000857789 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857789 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2017
000857789 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857789 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857789 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857789 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857789 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857789 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857789 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857789 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000857789 980__ $$ajournal
000857789 980__ $$aVDB
000857789 980__ $$aI:(DE-Juel1)IEK-12-20141217
000857789 980__ $$aUNRESTRICTED
000857789 981__ $$aI:(DE-Juel1)IMD-4-20141217