001     857789
005     20240712113124.0
024 7 _ |a 10.1002/ente.201800133
|2 doi
024 7 _ |a 1920-4159
|2 ISSN
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a WOS:000449676400021
|2 WOS
037 _ _ |a FZJ-2018-06756
082 _ _ |a 610
100 1 _ |a Dagger, Tim
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries - II. Full Cell Cycling and Postmortem Analyses
260 _ _ |a [S.l.]
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1578577646_24602
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Within this 2nd part of a comparative study five flame retardant additives (FRs) as candidates for lithium ion battery (LIB) electrolytes are evaluated in terms of their electrochemical performance in order to investigate performance differences and their long‐term stability. FRs from four different phosphorus‐containing molecule classes, (namely tris(2,2,2‐trifluoroethyl)phosphate (TFP), tris(2,2,2‐trifluoroethyl)phosphite (TTFPi), bis(2,2,2‐trifluoroethyl)methylphosphonate (TFMP), (ethoxy)pentafluorocyclotriphosphazene (PFPN), (phenoxy)pentafluorocyclotriphosphazene (FPPN)) are investigated using MCMB graphite anode/NMC111 cathode full cells and cycled up to 501 times. A major part of the investigations focuses on the effect of different FRs on the first cycle performance, the raising additional resistance, the rate capability and the self‐discharge behavior of the cells. It is shown that the addition of fluorinated cyclophosphazenes (PFPN and FPPN) provides the best electrochemical performance among the evaluated additives. Postmortem investigations by gas chromatography‐mass spectrometry and scanning electron microscopy further validate the decomposition of TFP and TTFPi during prolonged cycling, thus explaining the detrimental impact on electrochemical performance. Hence, these additives are not suitable for application in LIB in terms of safety enhancement. In contrast, TFMP, PFPN and FPPN improve the electrolyte stability. The formation of typical decomposition products (e. g. dimethyl‐2,5‐dioxahexanedicarboxylate) that indicate severe electrolyte degradation, is avoided by using these additives.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niehoff, Philip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lürenbaum, Constantin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schappacher, Falko M.
|0 0000-0002-3743-8837
|b 3
|e Corresponding author
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|u fzj
773 _ _ |a 10.1002/ente.201800133
|g Vol. 6, no. 10, p. 2023 - 2035
|0 PERI:(DE-600)2700412-0
|n 10
|p 2023 - 2035
|t Energy technology
|v 6
|y 2018
|x 2194-4288
856 4 _ |u https://juser.fz-juelich.de/record/857789/files/Dagger_et_al-2018-Energy_Technology.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/857789/files/Dagger_et_al-2018-Energy_Technology.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:857789
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21