001     857816
005     20210129235719.0
024 7 _ |a 10.1109/IGARSS.2018.8517378
|2 doi
024 7 _ |a 2128/20220
|2 Handle
037 _ _ |a FZJ-2018-06783
100 1 _ |a Erlingsson, Ernir
|0 P:(DE-HGF)0
|b 0
111 2 _ |a IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
|c Valencia
|d 2018-07-22 - 2018-07-27
|w Spain
245 _ _ |a Scaling Support Vector Machines Towards Exascale Computing for Classification of Large-Scale High-Resolution Remote Sensing Images
260 _ _ |c 2018
|b IEEE
300 _ _ |a 1792-1795
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1543482108_22948
|2 PUB:(DE-HGF)
520 _ _ |a Progress in sensor technology leads to an ever-increasing amount of remote sensing data which needs to be classified in order to extract information. This big amount of data requires parallel processing by running parallel implementations of classification algorithms, such as Support Vector Machines (SVMs), on High-Performance Computing (HPC) clusters. Tomorrow's supercomputers will be able to provide exascale computing performance by using specialised hardware accelerators. However, existing software processing chains need to be adapted to make use of the best fitting accelerators. To address this problem, a mapping of an SVM remote sensing classification chain to the Dynamical Exascale Entry Platform (DEEP), a European pre-exascale platform, is presented. It will allow to scale SVM-based classifications on tomorrow's hardware towards exascale performance.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
|u fzj
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 2
|u fzj
700 1 _ |a Neukirchen, Helmut
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1109/IGARSS.2018.8517378
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857816/files/Erlingsson_IGARSS_2018.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857816/files/Erlingsson_IGARSS_2018.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857816
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21