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ABSTRACT

Progress in sensor technology leads to an ever-increasing

amount of remote sensing data which needs to be classified

in order to extract information. This big amount of data

requires parallel processing by running parallel implemen-

tations of classification algorithms, such as Support Vector

Machines (SVMs), on High-Performance Computing (HPC)

clusters. Tomorrow’s supercomputers will be able to pro-

vide exascale computing performance by using specialised

hardware accelerators. However, existing software process-

ing chains need to be adapted to make use of the best fitting

accelerators. To address this problem, a mapping of an SVM

remote sensing classification chain to the Dynamical Exascale

Entry Platform (DEEP), a European pre-exascale platform, is

presented. It will allow to scale SVM-based classifications

on tomorrow’s hardware towards exascale performance.

Index Terms— Remote Sensing, Support Vector Ma-

chines (SVMs), High-Performance Computing (HPC), Exas-

cale Computing, Hardware Accelerators

1. INTRODUCTION

One of the challenges in remote sensing during the last

decades is to classify land cover into distinct classes based

on high resolution datasets acquired from airborne and satel-

lite sensors [1]. These sensors are continuously improving,

resulting in an enormous volume, velocity, and variety of

sensed data. For example, Copernicus, the world’s largest

single Earth observation program, with its fleet of Sentinel

satellites alone, creates over 10 Petabyte of new data per year

(with just Sentinel-1, -2 and -3 fully operational and more to

come in the future). This leads to new challenges within the

entire lifecycle of remote sensing data [2].

Among the remote sensing classifiers, Support Vector

Machines (SVMs) [3] have often been found to be more

effective with respect to accuracy and stability. However,

SVMs are computationally very demanding. Where in the

past serial implementations of classification algorithms were
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sufficient to deal with remote sensing data, today’s big data

requires parallel processing to deal with its huge amount of

data and to get results within an acceptable time frame [4].

These parallel processing implementations are not restricted

to multi-core implementations running on a single machine

with shared memory, but even run on High-Performance

Computing (HPC) clusters with distributed memory.

Todays high-end HPC clusters reach a performance in the

order of petaflops (1015 floating point operations per second).

While this performance may be sufficient for today’s applica-

tions, higher performance is envisaged for the future and thus,

the design of exascale computing systems has begun, yield-

ing a thousandfold performance increase. For remote sensing,

this will allow for tackling of larger scale problems, such as

the ever-increasing amount of data produced by modern sen-

sors, or to obtain classification results in near real-time, e.g.

to immediately evaluate the damages caused by an earthquake

once the remote sensing data is available.

However, the road towards exascale is paved with obsta-

cles and requires not only specialised HPC hardware accel-

erators to clear them, but additionally the software needs to

be adapted to the new hardware in order to obtain exascale

performance. This paper proposes a novel approach to make

the classification process of remote sensing data using SVMs

ready for exascale computing. To this aim, a new software

chain has been developed that maps the different phases of

classification via an SVM to the specialised exascale hard-

ware accelerators that are being developed in the European

Union’s Horizon 2020 exascale project Dynamical Exascale

Entry Platform – Extreme Scale Technologies (DEEP-EST).

To the best of our knowledge, no other work exists on making

SVMs ready for exascale to date.

2. BACKGROUND

In the following, we provide foundations on classification us-

ing SVMs and the DEEP exascale entry platform.

2.1. Support Vector Machines

Generally, in supervised machine learning, sensor data can be

classified with decent accuracy using trained models created



Fig. 1. Utilizing the Modular Supercomputer architecture for cross-validation

with Support Vector Machines (SVMs) [3]: First, the raw in-

put data is prepared with feature engineering which usually

significantly improves the performance of the algorithm. We

use the Self-Dual Attribute Profile (SDAP) [5] technique due

to its suitability in extracting features for SVMs from remote

sensor data with both high high-spectral and spatial resolu-

tions. The SVM algorithm performs non-linear classifications

by using a method called the kernel trick which allows it to

operate implicitly in a high-dimensional feature space.

When using SVMs in an HPC environment, it is pertinent

that its implementation scales well across a large amount of

CPUs: our PiSvM [6] implementation is a slightly modified

version of the parallel πSvM [7] which has been improved [4]

to make more efficient use of the Message Passing Interface

(MPI) standard [8] for parallel processing in HPC clusters.

Briefly, PiSvM’s classifier generation is divided into three

phases: Cross-validation, training, and testing. The cross-

validation phase is used to choose the optimal hyperparam-

eters that will result in the highest accuracy of the classifier,

to best prevent both underfitting and overfitting of the model.

The training phase feeds the preprocessed training data into

the SVM algorithm which in turn calculates data-space coef-

ficients using the previously selected hyperparameters. These

coefficients can then implicitly be used to classify arbitrary in-

put data (e.g., new acquired hyperspectral images) via a gen-

erated model classifier. In order to evaluate the classifier’s

accuracy, the testing phase aims at comparing its output for a

selected set of input data with a correct classifications known

beforehand. Note that for the scope of this paper we mostly

include the testing within in the training phase.

2.2. The Dynamical Exascale Entry Platform

While the Dynamical Exascale Entry Platform (DEEP) [9]

is of pre-exascale performance, it is supposed to provide the

blueprints for a future exascale computing system. It is based

on the Modular Supercomputer Architecture (MSA) [10]

which consists of an arbitrary number of (accelerator) mod-

ules of different types (cf. Fig. 2), where each is tailored to fit

the needs of a specific set of computation, storage, or com-

munication tasks. These specialised accelerators are needed

to reach exascale performance which cannot be reached with

the current general purpose CPUs, storage, and interconnects.

The Cluster Module has the fastest CPUs, which makes

is suitable for tasks that are the most computationally ex-

pensive, with limited scalability. The Extreme Scale Booster

(ESB) [10] module can be described as putting the emphasis

on scaling: it consists of manycore CPUs less powerful than

the Cluster module, but makes up for it by the sheer num-

ber of cores. The ESB is best suitable for well scaling par-

allel tasks. Furthermore, the ESB module also includes the

Global Collective Engine (GCE) integrated in its fabric that

can with its Field-Programmable Gate array (FPGA) speed-

up MPI collective operations in hardware, e.g. summing up

values transmitted in MPI messages.

Finally, the Network Attached Memory (NAM) mod-

ule [11] is a special module that can be described as existing

in the fast fabric interconnection between the other mod-

ules. It has a large amount of fast memory (non-volatile

high-performance RAM) and mostly functions as a fast in-

termediary storage. However, it also has a general purpose

CPU and an FPGA which can be used by any application to

perform near-data processing for increased performance.



Fig. 2. Utilizing the Modular Supercomputer architecture for training

Other modules, such as the Data Analytics Module, are

currently not used by our PiSvM classification chain.

3. SUPPORT VECTOR MACHINES ON THE

DYNAMICAL EXASCALE ENTRY PLATFORM

In this section, we propose several techniques that utilize the

MSA modules of the DEEP system to accelerate the PiSvM

workflow for very large datasets. Overall, these techniques

will lead to a better performance and usability of the PiSvM

implementation.

The workflow is split into three parts, where each part is

divided into a number of key steps; cross-validation, where

the hyperparameters are selected; training, which also in-

cludes testing; classification, where the generated classifier

is used to classify new data. For each step a corresponding

accelerator module has been carefully selected, using novel

approaches where necessary, in order to achieve exascale

performance with PiSvM.

Furthermore, we automate the workflow of using the dif-

ferent accelerator modules by reducing the number of man-

ual, and often redundant, operations made by the scientist.

Hence, a scientist can specify the initial input parameters and

the desired level of accuracy and hopefully observe as PiSvM

converges on a model with the desired accuracy.

3.1. PiSvM Cross-Validation

The following is a step-by-step description, showing how the

MSA is exploited to enhance the model’s cross-validation

phase with PiSvM. These steps are also depicted in Fig. 1:

(1) It is determined with training and testing that a parameter

space search is required in order to perform model selection,

i.e. validation; (2) The relevant cross-validation datasets are

loaded into the NAM module to speed-up data access; (3) An

n-fold cross-validation over a grid of parameters (kernel, cost)

is performed to produce an estimate of the out-of-sample per-

formance by executing independent training processes on

“folded” subsets of the datasets. This step is somewhat

computationally expensive but each fold, however, is embar-

rassingly parallel and can therefore utilise the ESB module.

Each calculated parameter is then stored in the NAM module

for quick access; (4) The best parameters with regards to the

maximum accuracy in all folds across all parameter spaces

can be computed in hardware via near-data processing by the

FPGA inside the NAM module. Finally, this parameter set is

then given as input to the training/test pipeline.

3.2. PiSvM Training

Similarly to the cross-validation phase, the MSA is also ex-

ploited to enhance the training phase of PiSvM, as is depicted

in Fig. 2 and described in the following step-by-step: (1) The

remote sensing training and testing datasets are loaded into

the NAM module, this reduces latency and bandwidth restric-

tions when data is accessed; (2) Training a model is compu-

tationally expensive due to the inherent convergence process

executed by PiSvM, it is therefore best suited for the DEEP

Cluster Module, which offers powerful CPUs; (3) The trained

model is placed in the NAM module to improve the access to

it during testing and cross-validation; (4) Model testing in or-

der to evaluate its accuracy is embarrassingly parallel which

can therefore take advantage of the ESB module which con-



tains the largest quantity of CPUs. Finally, if the model ac-

curacy is deemed too poor during testing, step (2) is repeated

with different kernel and/or cost parameters.

3.3. PiSvM Classification

For the actual classification of new data, the powerful CPUs

of the DEEP Cluster Module are best suited. If the model ob-

tained in the previous phases is still stored in the NAM mod-

ule, it can be even retrieved from there.

4. SUMMARY AND OUTLOOK

We presented an approach to make SVM-based classification

of big remote sensing data ready for the exascale computing

era. The key to the approach is to exploit the specialised hard-

ware accelerators of an exascale HPC system. We illustrated

this by providing a mapping of a full SVM parallel process-

ing chain to the various accelerator modules of the European

Dynamical Exascale Entry Platform (DEEP). Wherever pos-

sible, the benefits of these hardware accelerators modules are

leveraged: massively parallel manycore processing of em-

barrassingly parallel processes is performed on the Extreme

Scale Booster (ESB), whereas tasks that scale not as well are

executed on the high-performance Cluster Module, frequently

used data is stored in the Network Attached Memory (NAM)

including near-data processing via FPGA. This all is facili-

tated by a fast fabric interconnection and the Global Collec-

tive Engine (GCE) for MPI collective operations.

The described accelerator modules are currently being de-

veloped as part of the Dynamical Exascale Entry Platform –

Extreme Scale Technologies (DEEP-EST) project, hence it

is not yet possible to evaluate the suggested SVM exascale

chain. Once the hardware is ready, we will deploy our so-

lution to the pre-exascale system and evaluate it. To fully

automate our SVM for exascale chain, we intend to use the

same workflow techniques as we have successfully applied

for an SVM chain in a non-exascale HPC environment [12,

13]. This eases the non-trivial usage of an HPC system.

By tracing our parallel processing PiSvM implementation

on preliminary hardware prototypes, we have already noticed

that there is further room for parallel processing speed-up. We

have thus started to work on further PiSvM improvements.

Finally, first experiments of hyperspectral image classi-

fication using deep learning with Convolutional Neural Net-

works (CNNs) look promising [14]. We will therefore investi-

gate whether this is a viable alternative to SVMs on the DEEP

pre-exascale platform.
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