000857831 001__ 857831
000857831 005__ 20240712113125.0
000857831 0247_ $$2doi$$a10.1002/aenm.201802151
000857831 0247_ $$2ISSN$$a1614-6832
000857831 0247_ $$2ISSN$$a1614-6840
000857831 0247_ $$2WOS$$aWOS:000451181900002
000857831 037__ $$aFZJ-2018-06798
000857831 082__ $$a050
000857831 1001_ $$0P:(DE-HGF)0$$aOtteny, Fabian$$b0
000857831 245__ $$aUnlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross-Linking
000857831 260__ $$aWeinheim$$bWiley-VCH$$c2018
000857831 3367_ $$2DRIVER$$aarticle
000857831 3367_ $$2DataCite$$aOutput Types/Journal article
000857831 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575011463_25887
000857831 3367_ $$2BibTeX$$aARTICLE
000857831 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857831 3367_ $$00$$2EndNote$$aJournal Article
000857831 520__ $$aOrganic cathode materials are a sustainable alternative to transition metal oxide‐based compounds in high voltage rechargeable batteries due to their low toxicity and availability from less‐limited resources. Important criteria in their design are a high specific capacity, cycling stability, and rate capability. Furthermore, the cathode should contain a high mass loading of active material and be compatible with different anode materials, allowing for its use in a variety of cell designs. Here, cross‐linked poly(3‐vinyl‐N‐methylphenothiazine) as cathode‐active material is presented, which shows a remarkable rate capability (up to 10C) and cycling stability at a high and stable potential of 3.55 V versus Li/Li+ and a specific capacity of 112 mAh g−1. Its use in full cells with a high mass loading of 70 wt% is demonstrated against lithium titanate as intercalation material as well as lithium metal, which both show excellent performance. Through comparison with poly(3‐vinyl‐N‐methylphenothiazine) the study shows that changing the structure of the redox‐active polymer through cross‐linking can lead to a change in charge/discharge mechanism and cycling behavior of the composite electrode. Poly(3‐vinyl‐N‐methylphenothiazine) in its cross‐ and non‐cross‐linked form both show excellent results as cathode‐active materials with variable specifications regarding specific capacity, cycling stability, and rate capability.
000857831 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857831 588__ $$aDataset connected to CrossRef
000857831 7001_ $$0P:(DE-HGF)0$$aKolek, Martin$$b1
000857831 7001_ $$0P:(DE-HGF)0$$aBecking, Jens$$b2
000857831 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
000857831 7001_ $$00000-0003-4378-4805$$aBieker, Peter$$b4$$eCorresponding author
000857831 7001_ $$00000-0002-2430-1380$$aEsser, Birgit$$b5$$eCorresponding author
000857831 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.201802151$$gVol. 8, no. 33, p. 1802151 -$$n33$$p1802151 -$$tAdvanced energy materials$$v8$$x1614-6832$$y2018
000857831 8564_ $$uhttps://juser.fz-juelich.de/record/857831/files/Otteny_et_al-2018-Advanced_Energy_Materials.pdf$$yRestricted
000857831 8564_ $$uhttps://juser.fz-juelich.de/record/857831/files/Otteny_et_al-2018-Advanced_Energy_Materials.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857831 909CO $$ooai:juser.fz-juelich.de:857831$$pVDB
000857831 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
000857831 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857831 9141_ $$y2019
000857831 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857831 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857831 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2017
000857831 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857831 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857831 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857831 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857831 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857831 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857831 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857831 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bADV ENERGY MATER : 2017
000857831 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000857831 980__ $$ajournal
000857831 980__ $$aVDB
000857831 980__ $$aI:(DE-Juel1)IEK-12-20141217
000857831 980__ $$aUNRESTRICTED
000857831 981__ $$aI:(DE-Juel1)IMD-4-20141217