000857833 001__ 857833
000857833 005__ 20240709082126.0
000857833 0247_ $$2doi$$a10.1016/j.joule.2018.09.003
000857833 0247_ $$2altmetric$$aaltmetric:48919220
000857833 0247_ $$2WOS$$aWOS:000453896100011
000857833 037__ $$aFZJ-2018-06800
000857833 082__ $$a333.7
000857833 1001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b0$$eCorresponding author
000857833 245__ $$aPerspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries
000857833 260__ $$a[Cambridge, Mass.]$$bCell Press$$c2018
000857833 3367_ $$2DRIVER$$aarticle
000857833 3367_ $$2DataCite$$aOutput Types/Journal article
000857833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575010670_25884
000857833 3367_ $$2BibTeX$$aARTICLE
000857833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857833 3367_ $$00$$2EndNote$$aJournal Article
000857833 520__ $$aWhile lithium-ion batteries dominate the field of high-energy-density applications, a variety of promising alternative battery technologies exist that might be suitable for various application purposes. Their requirements may vary considerably, e.g., for stationary batteries they are significantly different from those of traction batteries in electric vehicles, i.e., low installation and lifetime cost and a long cycle life are the key parameters for the former ones. Here, we review the recent developments of dual-ion battery (DIB) and particularly of dual-graphite battery technologies, which may be considered as sustainable option for grid storage. We present the progress and challenges of DIB materials and electrolytes, especially with respect to performance parameters, e.g., energy density and cycling stability as well as cost. We discuss the major challenges for practical application and critically evaluate the DIB technology along with an assessment of the potential to fulfill the targets for grid storage.
000857833 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857833 588__ $$aDataset connected to CrossRef
000857833 7001_ $$0P:(DE-HGF)0$$aHeckmann, Andreas$$b1
000857833 7001_ $$0P:(DE-HGF)0$$aSchmuch, Richard$$b2
000857833 7001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b3$$ufzj
000857833 7001_ $$0P:(DE-HGF)0$$aBeltrop, Kolja$$b4
000857833 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author$$ufzj
000857833 773__ $$0PERI:(DE-600)2952490-8$$a10.1016/j.joule.2018.09.003$$gp. S2542435118304069$$n12$$p2528-2550$$tJoule$$v2$$x2542-4351$$y2018
000857833 909CO $$ooai:juser.fz-juelich.de:857833$$pVDB
000857833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172048$$aForschungszentrum Jülich$$b3$$kFZJ
000857833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000857833 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857833 9141_ $$y2019
000857833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857833 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000857833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857833 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000857833 980__ $$ajournal
000857833 980__ $$aVDB
000857833 980__ $$aI:(DE-Juel1)IEK-12-20141217
000857833 980__ $$aUNRESTRICTED
000857833 981__ $$aI:(DE-Juel1)IMD-4-20141217