001     857833
005     20240709082126.0
024 7 _ |a 10.1016/j.joule.2018.09.003
|2 doi
024 7 _ |a altmetric:48919220
|2 altmetric
024 7 _ |a WOS:000453896100011
|2 WOS
037 _ _ |a FZJ-2018-06800
082 _ _ |a 333.7
100 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 0
|e Corresponding author
245 _ _ |a Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries
260 _ _ |a [Cambridge, Mass.]
|c 2018
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575010670_25884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While lithium-ion batteries dominate the field of high-energy-density applications, a variety of promising alternative battery technologies exist that might be suitable for various application purposes. Their requirements may vary considerably, e.g., for stationary batteries they are significantly different from those of traction batteries in electric vehicles, i.e., low installation and lifetime cost and a long cycle life are the key parameters for the former ones. Here, we review the recent developments of dual-ion battery (DIB) and particularly of dual-graphite battery technologies, which may be considered as sustainable option for grid storage. We present the progress and challenges of DIB materials and electrolytes, especially with respect to performance parameters, e.g., energy density and cycling stability as well as cost. We discuss the major challenges for practical application and critically evaluate the DIB technology along with an assessment of the potential to fulfill the targets for grid storage.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heckmann, Andreas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmuch, Richard
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meister, Paul
|0 P:(DE-Juel1)172048
|b 3
|u fzj
700 1 _ |a Beltrop, Kolja
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.joule.2018.09.003
|g p. S2542435118304069
|0 PERI:(DE-600)2952490-8
|n 12
|p 2528-2550
|t Joule
|v 2
|y 2018
|x 2542-4351
909 C O |o oai:juser.fz-juelich.de:857833
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172048
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21