001     857840
005     20240709082127.0
024 7 _ |a 10.1002/aenm.201802404
|2 doi
024 7 _ |a 1614-6832
|2 ISSN
024 7 _ |a 1614-6840
|2 ISSN
024 7 _ |a WOS:000453273200003
|2 WOS
024 7 _ |a altmetric:50587458
|2 altmetric
037 _ _ |a FZJ-2018-06807
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Rodenas, Tania
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a 2D Metal Organic Framework-Graphitic Carbon Nanocomposites as Precursors for High-Performance O 2 -Evolution Electrocatalysts
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1544879664_22109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The development of effective and precious‐metal‐free electrocatalysts for the oxygen evolution reaction (OER) represents a major bottleneck to unlock a renewable energy scenario based on water splitting technologies. Materials uniting the electrical conductivity of conjugated graphitic nanomaterials with the chemical regularity of metal‐organic‐framework (MOF) crystals are promising precursors for such electrocatalysts. Nanoscale integration of these two materials is challenging. A new synthesis route is developed that integrates 2D MOF nanocrystals and graphitic carbon nanolamellae into layered composites. The graphitic carrier contributes excellent charge–transport properties, and the 2D macromolecular MOF precursor provides a suitable shuttle for introducing highly dispersed metal species. Furthermore their direct chemical environment can be controlled via selection of organic linker. Thermal decomposition of 2D cobalt tetrafluoro benzene‐dicarboxylate MOF nanocrystals within such composites enables the stabilization of cobalt oxyhydroxyfluoride nanoparticles on the graphitic carrier, which display an extraordinary activity for the OER in alkaline media, with low onset overpotential (310 mVRHE) and current densities >104 mA cm−2 μmolCo−1 at an operating overpotential of 450 mV, alongside excellent operational stability. The wide compositional array of MOFs makes this synthesis approach versatile toward advanced (electro)catalysts and other functional materials for applications from sensing to energy storage and conversion.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beeg, Sebastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Spanos, Ioannis
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Neugebauer, Sebastian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Girgsdies, Frank
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Algara-Siller, Gerardo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schleker, Peter Philipp Maria
|0 P:(DE-Juel1)168465
|b 6
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 7
700 1 _ |a Pfänder, Norbert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Willinger, Marc
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Greiner, Mark
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Prieto, Gonzalo
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Schlögl, Robert
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Heumann, Saskia
|0 0000-0003-3594-6392
|b 13
773 _ _ |a 10.1002/aenm.201802404
|g p. 1802404 -
|0 PERI:(DE-600)2594556-7
|n 35
|p 1802404 -
|t Advanced energy materials
|v 8
|y 2018
|x 1614-6832
909 C O |o oai:juser.fz-juelich.de:857840
|p VDB
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 4
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)168465
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)168465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156296
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 10
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
910 1 _ |a MPI Mülheim
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 13
|6 0000-0003-3594-6392
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERGY MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b ADV ENERGY MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21