001     857841
005     20240712112839.0
024 7 _ |a 10.1002/chem.201800341
|2 doi
024 7 _ |a 0947-6539
|2 ISSN
024 7 _ |a 1521-3765
|2 ISSN
024 7 _ |a 2128/20222
|2 Handle
024 7 _ |a pmid:29575186
|2 pmid
024 7 _ |a WOS:000442491000023
|2 WOS
024 7 _ |a altmetric:40806288
|2 altmetric
037 _ _ |a FZJ-2018-06808
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Straten, Jan Willem
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Nitrogen-Functionalized Hydrothermal Carbon Materials by Using Urotropine as the Nitrogen Precursor
260 _ _ |a Weinheim
|c 2018
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543483366_22946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nitrogen‐containing hydrothermal carbon (N‐HTC) materials of spherical particle morphology were prepared by means of hydrothermal synthesis with glucose and urotropine as precursors. The molar ratio of glucose to urotropine has been varied to achieve a continuous increase in nitrogen content. By raising the ratio of urotropine to glucose, a maximal nitrogen fraction of about 19 wt % could be obtained. Decomposition products of both glucose and urotropine react with each other; this opens up a variety of possible reaction pathways. The pH has a pronounced effect on the reaction pathway of the corresponding reaction steps. For the first time, a comprehensive analytical investigation, comprising a multitude of analytical tools and instruments, of a series of nitrogen‐containing HTC materials was applied. Functional groups and structural motifs identified were analyzed by means of FTIR spectroscopy, thermogravimetric MS, and solid‐state NMR spectroscopy. Information on reaction mechanisms and structural details were obtained by electronic structure calculations that were compared with vibrational spectra of polyfuran or polypyrrole‐like groups, which represent structural motifs occurring in the present samples.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schleker, Philipp
|0 P:(DE-Juel1)168465
|b 1
700 1 _ |a Krasowska, Małgorzata
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Veroutis, Emmanouil
|0 P:(DE-Juel1)171130
|b 3
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 4
700 1 _ |a Auer, Alexander A.
|0 0000-0001-8106-5380
|b 5
700 1 _ |a Hetaba, Walid
|0 0000-0003-4728-0786
|b 6
700 1 _ |a Becker, Sylvia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Schlögl, Robert
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Heumann, Saskia
|0 0000-0003-3594-6392
|b 9
|e Corresponding author
773 _ _ |a 10.1002/chem.201800341
|g Vol. 24, no. 47, p. 12298 - 12317
|0 PERI:(DE-600)1478547-x
|n 47
|p 12298 - 12317
|t Chemistry - a European journal
|v 24
|y 2018
|x 0947-6539
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/857841/files/chem.201800341.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/857841/files/chem.201800341.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:857841
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168465
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)168465
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)162401
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 5
|6 0000-0001-8106-5380
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0003-4728-0786
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 6
|6 0000-0003-4728-0786
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a MPI-CEC Mülheim
|0 I:(DE-HGF)0
|b 9
|6 0000-0003-3594-6392
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM-EUR J : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM-EUR J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21