001     857842
005     20240712112818.0
024 7 _ |a 10.1016/j.actamat.2018.07.018
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a WOS:000445318800030
|2 WOS
024 7 _ |a altmetric:46739055
|2 altmetric
037 _ _ |a FZJ-2018-06809
041 _ _ |a English
082 _ _ |a 670
100 1 _ |a Schultheiß, Jan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Revealing the sequence of switching mechanisms in polycrystalline ferroelectric/ferroelastic materials
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science85412
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543484982_22946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ferroelectric materials find application in numerous electronic devices and are continuously enabling the development of new technologies. Their versatility is intimately related to the unique property to switch the polarization with electric fields. However, the switching mechanisms in polycrystalline ferroelectric materials remain insufficiently understood. Here we reveal that switching in ferroelectric/ferroelastic materials consists of a sequence of individual events, separated into three regimes: rapid movement of non-180° domain walls, main switching phase with 180° and non-180° switching events, and creep-like non-180° domain wall movement. The determination of the mechanisms was enabled by a novel measurement approach, simultaneously tracking the time dynamics of switched polarization, macroscopic strain, and structural changes. Time-resolved in situ synchrotron diffraction allowed direct insight into the non-180° domain wall dynamics and lattice strains and gave evidence for strong time correlation of non-180° switching events in different grains of the polycrystalline material. The obtained results open new opportunities for targeted manipulation of individual switching events and tuning of material's functional properties.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liu, Lisha
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 2
|u fzj
700 1 _ |a Weber, Michael
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kodumudi Venkataraman, Laltiha
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Checchia, Stefano
|0 0000-0003-0499-4885
|b 5
700 1 _ |a Damjanovic, Dragan
|0 0000-0002-9596-7438
|b 6
700 1 _ |a Daniels, John E.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Koruza, Jurij
|0 0000-0002-0258-6709
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.actamat.2018.07.018
|g Vol. 157, p. 355 - 363
|0 PERI:(DE-600)2014621-8
|p 355 - 363
|t Acta materialia
|v 157
|y 2018
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/857842/files/1-s2.0-S1359645418305469-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/857842/files/1-s2.0-S1359645418305469-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:857842
|p VDB
910 1 _ |a TU Darmstadt
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Schoof of Materials Sciences and engineering
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157700
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a TU Darmstadt
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a TU Darmstadt
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-HGF)0
910 1 _ |a ESRF Grenoble
|0 I:(DE-HGF)0
|b 5
|6 0000-0003-0499-4885
910 1 _ |a School of Materials Science and engineering
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
910 1 _ |a TU Darmstadt
|0 I:(DE-HGF)0
|b 8
|6 0000-0002-0258-6709
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21