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We employ the functional renormalization group to study the effects of phonon-assisted tunneling on the

nonequilibrium steady-state transport through a single level molecular quantum dot coupled to electronic

leads. Within the framework of the spinless Anderson-Holstein model we focus on small to intermediate

electron-phonon couplings and we explore the evolution from the adiabatic to the antiadiabatic limit and also

from the low-temperature nonperturbative regime to the high-temperature perturbative one. We identify the

phononic signatures in the bias-voltage dependence of the electrical current and the differential conductance.

Considering a temperature gradient between the electronic leads we further investigate the interplay between

the transport of charge and heat. Within the linear response regime we compare the temperature dependence

of various thermoelectric coefficients to our earlier results obtained within the numerical renormalization group

[Phys. Rev. B 96, 195156 (2017)]. Beyond the linear response regime in the context of thermoelectric generators

we discuss the influence of molecular vibrations on the output power and the efficiency. We find that in the

antiadiabatic limit the thermoelectric efficiency can be significantly enhanced.

DOI: 10.1103/PhysRevB.98.195138

I. INTRODUCTION

In molecular electronics [1], many-body correlations are

expected to play an important role at low temperatures [2,3].

Transport measurements in such systems can reveal the direct

consequences of the local Coulomb interaction or the local

electron-phonon coupling [4]. Of particular interest is to study

how these interactions modify the interplay between electri-

cal and heat conduction. Such studies can provide guidance

for potential routes towards the use of such nanostructures

for possible applications in on-chip cooling and waste-heat

conversion [5]. Theoretical guidance is needed to properly

interpret experimental results [6]. Improving the theoretical

understanding of thermoelectric transport through vibrating

molecular quantum dots can thus help to address fundamental

questions on the restrictions of the efficiency of molecular

quantum dot–heat engines, and on the role of many-body

effects in coupled irreversible processes (heat and electrical

conduction).

In this work we consider the spinless Anderson-Holstein

model (SAHM) which is a simple model to capture the

effects of local vibrational degrees of freedom in molecular

devices [7]. The electron-phonon interaction results in the

emergence of a low-energy scale Ŵeff which is smaller than

the bare tunneling rate Ŵ (see below for exact definitions).

In several studies it was investigated how this low-energy

scale evolves with increasing the electron-phonon coupling,

and the phonon frequency, and a combined polaronic and

x-ray edge like renormalization was found [8–11]. Here our

focus is on correlation effects in the nonlinear thermoelectric

transport properties of the SAHM. In the antiadiabatic limit,

namely when the phonon frequency is much larger than the

bare tunneling rate, the physics is nonperturbative and we

need sophisticated many-body methods. For this purpose, we

use the functional renormalization group (FRG) [12], which

goes well beyond perturbation theory even within its simplest

approximation scheme (first-order truncation).

The FRG approach is a flexible theoretical method to tackle

interacting many-body systems from two- or one-dimensional

interacting fermionic models [12] to quantum impurity sys-

tems [13]. In particular, the effects of the local Coulomb

interaction on the impurity site have been investigated within

the single impurity Anderson model in equilibrium [14],

as well as in the steady-state nonequilibrium [15], and the

influences of the nearest neighbor Coloumb interaction at the

contact point between the impurity and the fermionic leads

has been studied within the interacting resonant level model

(IRLM) both in and out of equilibrium [16]. The interplay

between the local Coulomb interaction (Kondo physics) and

the local electron-phonon coupling (polaron physics) has been

also considered in the framework of the Anderson-Holstein

model within [17] and beyond [18] the linear response regime.

In contrast to previous applications of the FRG method,

for the SAHM the bare interaction is frequency dependent

(stemming from integrating out phonons; see below) resulting

in the frequency dependence of the self-energy even in the

lowest order truncation scheme. In this work we extend our

previous studies of the SAHM [11,19] by setting up the FRG

approach on the Keldysh contour [20,21]. The latter allows

us to compute the spectral function without the need for the

analytic continuation, and hence various linear thermoelec-

tric transport coefficients, as well as to study the nonlinear

bias-voltage and temperature gradient dependence of charge

and energy currents. In the linear response regime we com-

pare the FRG results to those obtained within the numerical
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renormalization group (NRG) approach [19]. As the nonequi-

librium steady-state NRG is a method still in development

[22–24], requiring the solution of the issues with thermaliza-

tion at long times [25,26], we do not employ NRG beyond

the linear response regime. However, see Ref. [27] for recent

progress on overcoming these issues.

Two distinct signatures of phonon-assisted tunneling in

nonequilibrium reported on in several experimental works

[4,28–34] are the blockade of the charge current at small

bias voltages (compared to the gate voltage ε̃0) and the

vibrational excitations appearing as (approximately) equally

spaced peaks in the bias-voltage dependence of the differen-

tial conductance. The first signature, the suppression of the

electrical current for strong electron-phonon couplings, and

for small bias voltages (≪max{Ŵeff , |ε̃0|}; see below) has been

theoretically verified for the SAHM [35–38]. In particular, in

Ref. [35], the iterative summation of path integrals (ISPI) has

been used, which is valid for sufficiently high temperatures

or large bias voltages, and in Ref. [36], the scattering-states

numerical renormalization group (SNRG) has been employed,

with the exclusive focus on strongly asymmetric coupling to

different reservoirs. This suppresses the bias-voltage depen-

dency of the spectral function and hence makes the calcula-

tions more feasible. The reduction of current has been denoted

as the Franck-Condon blockade, and was experimentally

observed in suspended carbon nanotube quantum dots with

longitudinal stretching mode (frequency ≈0.5 meV) in which

sizable electron-phonon couplings (of the order of frequency)

can be achieved [34], as well as carbon-based molecular

transistors (e.g., C60, and C140) [28,31]. This blockade is

due to the formation of a massive local polaron and can be

understood in terms of the equilibrium renormalized tunneling

rate Ŵeff. The second vibrational signature is the steplike I -V

characteristic [28,33], resulting in multiple phononic peaks

in the differential conductance [4,32]. This has also been

theoretically clarified for the SAHM in Ref. [37], using an

approach based on the variational Lang-Firsov transforma-

tion, and in Ref. [39], employing a hierarchical quantum

master equation approach. Similar features have been found in

the spinful version of the Anderson-Holstein model [40,41].

For this model the study of the current fluctuations in the

strong Coulomb blockade regime has revealed avalanchelike

transport of electrons for strong electron-phonon couplings

in the weak tunneling limit Ŵ ≪ T , resulting in giant Fano

factors [42].

Within the Keldysh FRG approach, besides reproducing

the results from the aforementioned studies, by considering

a finite temperature gradient, we further study the energy

current as a function of arbitrary bias-voltage and temperature.

In our approach the tunneling processes between the dot and

the leads are included to all orders. Being bound to weak

to intermediate electron-phonon coupling, we complement

the recent study in Ref. [43]. We characterize the nonlinear

thermoelectric effects and we further identify situations for

which these nonlinear effects can enhance the efficiency in the

context of thermoelectric generators, converting waste heat

into electrical energy by, i.e., charging a nanoscale battery.

In an earlier study of the IRLM, many-body effects due

to the short-range Coulomb interaction were found to have

nontrivial consequences resulting in the enhancement of the

efficiency [44]. In this paper we analyze the influence of cor-

relation effects induced by the molecular vibrational degrees

of freedom. The latter results in inelastic scattering processes

leading to the dissipation of energy in the molecule, as has

been discussed for the linear response regime, in Ref. [45]

using perturbation theory. We extend such an analysis to the

nonlinear and nonperturbative regime.

We organize this paper as follows. First, in Sec. II, we

briefly introduce the SAHM and the formal details of em-

ploying FRG on the Keldysh contour. Within the first-order

truncation, we obtain a set of coupled differential equations

for various components of the molecular self-energy. Our

results are presented in Sec. III. First, in the absence of a

temperature gradient, we characterize the vibrational features

in the bias-voltage dependency of the charge current and

differential conductance. We further investigate the perfor-

mance of the molecular quantum-dot heat engines. Finally,

in Sec. IV, we present a short summary and perspective. In

the Appendix we discuss the evolution of the nonequilibrium

spectral and distribution function upon increasing the bias

voltage. Furthermore, we compare the FRG results for the

molecular spectral function to the NRG for vanishing bias

voltage.

II. MODEL AND METHOD

The Anderson-Holstein model is defined by the Hamilto-

nian

H =
∑

α=L,R

∑

k

(εk − µα )c
†
α,kcα,k

+
1

√
Nsites

∑

α=L,R

tα
∑

k

(d†cα,k + H.c.)

+ ǫ0d
†d + ω0b

†b + λd†d(b† + b). (1)

It features two leads of noninteracting electrons (ladder op-

erators c
(†)
α,k), each of which is characterized by the chemical

potential µα , and is represented by a one-dimensional chain

with Nsites lattice sites and dispersion ǫk . The leads are coupled

to a localized level (ladder operator d (†)) with energy ǫ0 via

tunneling processes with amplitude tL/R. The localized level

is also coupled to a local vibrational mode with frequency

ω0. The coupling is such that the occupation of the molecule

leads to a displacement of the oscillator. The strength of this

displacement can be tuned with λ, the electron-phonon cou-

pling. The particle-hole symmetric point of the Hamiltonian is

ǫ0 = Ep, where Ep = λ2/ω0 is known as the polaronic shift.

Hence the quantity ε̃0 = ǫ0 − Ep controls the charge on the

molecule and can be regarded as the gate voltage.

Not being interested in band effects, we consider the so-

called wideband limit, where the leads have a constant density

of states ρlead = 1/(2D) in the interval [−D,D] and ρlead = 0

outside this interval. Thereby the bare tunneling rate reads

Ŵ =
∑

α=L,R Ŵα , with Ŵα = πρleadt
2
α , which determines the

width of the resonance in single-particle tunneling in the ab-

sence of the electron-phonon coupling. The electron-phonon

coupling suppresses the rate of resonant tunneling and results

in the appearance of phonon side peaks (see the Appendix).
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The former effect can be quantified by Ŵeff defined via Ŵeff =
1/(πχc ), where χc = − dnd (ε̃0 )

dε̃0
|ε̃0=0 is the local T = 0 charge

susceptibility and nd denotes the occupancy of the molecular

level.

A. Transport properties

We assume that at time t < t0 the localized level is decou-

pled from the vibrational degrees of freedom, and also from

the electronic leads, i.e., the system is uncorrelated with a

density operator ρeq = ρL ⊗ ρR ⊗ ρd ⊗ ρb, where ρL(R) rep-

resents the grand canonical density operator of the left(right)

fermionic lead at temperature TL(R), and chemical potential

µL(R), ρb is the density operator of the single-mode bosonic

bath at temperature Tph, and chemical potential µph = 0, and

finally, ρd denotes the dot density operator. At t = t0 the

electron-phonon interaction is turned on, and the molecule

is coupled to the leads. We are generally interested in the

electrical and heat currents passing through the molecule for

t > t0 for a given temperature gradient �T = TR − TL, and

a bias voltage V = (µL − µR )/e, with e being the electric

charge. The charge, energy, and heat currents leaving the

αth reservoir are defined as J c
α = −e〈〈∂t [ĉ

†
α,k (t )ĉα,k (t )]〉〉,

J E
α = 〈〈∂t [

∑

k ǫk ĉ
†
α,k (t )ĉα,k (t )]〉〉, and J Q

α = J E
α + (µα/e)J c

α ,

respectively. As we shall see these currents can be written

in terms of the molecular propagator with the retarded (ad-

vanced) component defined as

GR
mol(t, t

′) = [GA
mol(t, t

′)]∗

= −i�(t − t ′)〈〈{d̂ (t ), d̂†(t ′)}〉〉 (2)

and the Keldysh one as

GK
mol(t, t

′) = −i〈〈[d̂ (t ), d̂†(t ′)]〉〉, (3)

where “ˆ” refers to the Heisenberg picture and 〈〈· · · 〉〉 =
Tr{· · · ρeq}.

Integrating out the structureless leads, and being interested

in the steady-state limit t0 → −∞ (assuming that the limit

exists due to the presence of reservoirs), we can directly work

in (single) frequency space

G
R/A
mol (ω) = [ω − ǫ0 ± iŴ − �

R/A(ω)]−1 (4)

and

GK
mol(ω) = {�K(ω) − 2iŴ[1 − 2feff (ω)]}GR

mol(ω)GA
mol(ω),

(5)

with �
R/A/K(ω) being the components of the molecular self-

energy resulting from the presence of electron-phonon cou-

pling, feff (ω) =
∑

α=L,R(Ŵα/Ŵ)fα (ω), with the Fermi func-

tion fα (ω) = [exp{βα (ω − µα )} + 1]−1 and the inverse tem-

perature βα = 1/(kBTα ), kB being the Boltzmann constant.

The symmetric charge current J c = (ŴR/Ŵ)J c
L − (ŴL/Ŵ)J c

R

reduces to

J c =
e

h

4πŴLŴR

Ŵ

∫ ∞

−∞
dω[fL(ω) − fR(ω)]A(ω), (6)

where A(ω) = (−1/π )Im{GR
mol(ω)} represents the spectral

function and h denotes the Planck’s constant. The energy

current entering each reservoir reads

J E
L/R =

−4π

h
ŴL/R

∫ ∞

−∞
dω ω[fL/R(ω) − fNE(ω)]A(ω), (7)

with the nonequilibrium distribution function defined as

fNE(ω) =
1

2

{

1 −
GK

mol(ω)

GR
mol(ω) − GA

mol(ω)

}

. (8)

For the symmetric tunneling ŴR = ŴL, the difference of the

heat currents entering the left and right leads reduces to

J
Q
R − J

Q
L =

−2πŴ

h

∫ ∞

−∞
dω ω[fR(ω) − fL(ω)]A(ω). (9)

In the absence of a temperature gradient �T = 0, and at

particle-hole symmetry ε̃0 = 0, the integrand is odd and hence

the difference vanishes. In other words, the heat current enters

each reservoir symmetrically J
Q
L = J

Q
R .

In general, as we have an energy-conserving system, it

holds that

〈〈∂tĤ (t )〉〉 = J E
R + J E

L + Ėmol = 0, (10)

with the molecular energy dissipation rate

Ėmol ≡ 〈〈∂t [Ĥcoup(t ) + Ĥmol(t )]〉〉, (11)

where Hcoup is the coupling term [the second line of Eq. (1)]

and Hmol is the molecular contribution to the Hamiltonian [the

last line of Eq. (1)]. Equivalently, in terms of the charge and

heat currents, the energy dissipation rate reads

Ėmol = −J
Q
L − J

Q
R +

µL − µR

e
J c (12)

=
4πŴ

h

∫

dω ω[feff (ω) − fNE(ω)]A(ω). (13)

In the absence of electron-phonon coupling, fNE(ω) reduces

to feff (ω) [see Eq. (8)] and hence the molecular dissipation

rate vanishes, i.e., the energy is only being exchanged between

the electronic leads. In other words, the molecular dissipation

rate vanishes in the steady state limit in the absence of a cou-

pling to the phonon mode. However, for λ 
= 0, inelastic scat-

tering processes (frequency-dependent self-energy) induced

by phonon-assisted tunneling can modify the nonequilibrium

distribution function, potentially implying the dissipation of

energy, i.e., energy can be exchanged not only between the

fermionic leads but also with the phonon bath. Note that

the molecular dissipation rate Ėmol as defined in Eq. (10)

includes any form of energy not being dissipated as heat in the

electronic leads. It contains two contributions: the expectation

value of the molecular Hamiltonian as well as that of the

molecule-lead coupling part [see Eq. (11)].

B. FRG approach to the SAHM

Employing the functional integral formulation, the parti-

tion function of the SAHM is represented by an integral over

both the fermionic and the bosonic fields. However, we can

integrate out the vibrational degrees of freedom (bosons) and

obtain an effective (purely fermionic) action with a local in
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space while nonlocal in time (retarded) two-particle interac-

tion which in the tridiagonal representation [46] takes the form

ũ = λ2

(

DR(t, t ′) DK(t, t ′)
0 DA(t, t ′)

)

, (14)

with the phonon propagator defined via

DR(t, t ′) = [DA(t, t ′)]∗ = −i�(t − t ′)〈〈[Â(t ), Â†(t ′)]〉〉,
(15)

DK(t, t ′) = −i〈〈{Â(t ), Â†(t ′)}〉〉, (16)

with A ≡ b + b†. Therefore, in frequency space we obtain

DR(ω) = [DA(ω)]∗ =
2ω0

(ω + iη)2 − ω2
0

, (17)

DK(ω) = −2πi[1 + 2b(ω0)]
∑

s=±
δ(ω − sω0), (18)

where η → 0+ has been introduced to guarantee convergence

and b(ω) = [exp{βphω} − 1]−1 denotes the Bose distribu-

tion function at temperature Tph = 1/(kBβph ). Therefore, the

molecular vibrations result in a frequency-dependent (bare)

interaction in the fermionic action.

In the FRG approach [12], a flow parameter � ∈ [0,∞]

is introduced (in the free molecular propagator) and high-

frequency degrees of freedom (compared to �) are being

integrated out. From this procedure, we can obtain a hierarchy

of differential equations (flow equations) for the one-particle

irreducible vertex functions, e.g., the self-energy, and the

effective two-particle interaction. Truncation schemes are re-

quired to keep the calculations manageable. Here, we focus on

the first-order truncation scheme (controlled for weak to inter-

mediate electron-phonon couplings), i.e., only the self-energy

flows as we change the flow parameter from ∞ to zero. This

scheme has been successfully employed for the IRLM in and

out of equilibrium [16], or even for explicit time dependencies

[47], and also for the SAHM in equilibrium (finding good

agreement with the nonperturbative NRG approach) [11].

To obtain the flow equation for the various components

of the self-energy, we need to specify a scale-dependent

free molecular propagator. We use the reservoir cutoff, as

proposed in Ref. [48], having the advantage of preserving

some symmetries (like causality) even at the lowest order

truncation [49]. In this scheme, one assumes that at each �,

the molecular level is coupled to an auxiliary reservoir with

tunneling rate � and distribution function feff (ω). Hence the

scale-dependent propagator G
�,R/A/K
mol (ω) can be determined

analogous to Eqs. (4) and (5), simply by replacing Ŵ by

Ŵ + �, and �
s (ω) by �

�,s(ω) − ǫ0, with s = R, A, K. In

this way, all energy scales can be addressed, and the infrared

divergences that often show up in perturbation theory can be

regularized. Following the standard procedure, we obtain the

flow equations as

∂��
�,R/A(ν) = −i

λ2

4π

{

2

ω0

∫ ∞

−∞
dω S�,K(ω) +

∑

s 
=s ′=R/A,K

∫ ∞

−∞
dω S�,s (ω)Ds ′

(ν − ω)

}

, (19)

∂��
�,K(ν) = −i

λ2

4π

{

2

ω0

∑

s=R,A

∫ ∞

−∞
dω S�,s (ω) +

∑

s=R,A,K

∫ ∞

−∞
dω S�,s (ω)Ds (ν − ω)

}

, (20)

with single-scale propagator

S�,R(ω) = i
[

G
�,R
mol (ω)

]2 = [S�,A(ω)]∗, (21)

S�,K(ω) = iG
�,R
mol (ω)G

�,K
mol (ω) − iG

�,K
mol (ω)G

�,A
mol (ω)

+ G
�,R
mol (ω)

[

2i[1 − 2feff (ω)]
]

G
�,A
mol (ω). (22)

One can show that particle-hole symmetry is preserved for

any �. Furthermore, in thermal equilibrium, the fluctuation

dissipation theorem (FDT) is preserved during the flow. We

solve the coupled differential equations (19) and (20) with

initial conditions

�
�→∞,R/A(ν) − ǫ0 = Ep, �

�→∞,K(ν) = 0, (23)

numerically using standard adaptive routines. We always

checked the convergence of the results with respect to the

frequency grid (technical necessity to solve the differential

equations), and the symmetries such as the particle-hole sym-

metry at ǫ0 = Ep and the FDT at eV = 0, and �T = 0 has

been numerically verified up to machine precision.

III. RESULTS

Having access to the frequency structure of various com-

ponents of the molecular Green’s functions Eqs. (4) and (5),

in Sec. III A we study the bias-voltage dependence of the

charge current Eq. (6) and the differential conductance at

different gate voltages. In Sec. III B, we discuss the evolution

of electrical current and energy dissipation rate as one enters

the high-temperature regime from the low-temperature one.

Finally, in Sec. III C we study the thermoelectric transport

through a vibrating molecule trapped between leads held at

different temperatures and chemical potentials. In the linear

regime we compare the transport coefficients with NRG,

while in the nonlinear regime we discuss how the efficiency

of a thermoelectric generator can be enhanced by vibrational

degrees of freedom.

A. Bias voltage dependence of the charge current and

the differential conductance

We investigate the current-bias-voltage characteristic of

the SAHM, in the absence of a temperature gradient TL =
TR = Tph = T . At the particle-hole symmetry, we consider

the evolution with increasing the electron-phonon coupling
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FIG. 1. Charge current J c vs bias-voltage V at particle-hole

symmetry ε̃0 = 0, for the listed electron-phonon couplings λ/ω0

(a) in the crossover regime of phonon frequency ω0/Ŵ = 1 and

(b) in the antiadiabatic limit ω0/Ŵ = 10. Inset to (a): J c vs V

in the adiabatic limit ω0/Ŵ = 0.1. Inset to (b): J c vs V at finite

gate voltage ε̃0 = −Ep in the antiadiabatic limit (ω0/Ŵ = 10). For

λ/ω0 = 0, 0.5, 1,
√

2, we find Ŵeff/Ŵ = 1, 0.92, 0.70, 0.46 for the

crossover regime in (a), while for the antiadiabatic regime in (b), we

find Ŵeff/Ŵ = 1, 0.83, 0.45, 0.19. The temperature is kBT/Ŵ = 0.1

in all plots.

from the adiabatic limit to the antiadiabatic one. As we

shall see the phonon signatures are more prominent in the

antiadiabatic limit in which the charge fluctuations can ef-

fectively (de)excite the vibrational degrees of freedom (as

the dwell time of electrons on the molecule is larger than

time scale of the molecular vibrations 1/Ŵ ≫ 1/ω0). Going

beyond particle-hole symmetry, we further comment on the

bias-voltage dependence of the current and the differential

conductance in the antiadiabatic limit.

We first focus on the particle-hole symmetric case, ε̃0 = 0.

In the adiabatic limit (ω0/Ŵ = 0.1) the modification of the

bias-voltage dependence of the charge current for different

electron-phonon couplings is minor; see the inset of Fig. 1(a).

In the crossover regime (ω0 ≈ Ŵeff ), see Fig. 1(a), increasing

the electron-phonon coupling the current is suppressed, and at

eV ≈ ω0 an inflection point starts to form for stronger cou-

plings. In the antiadiabatic limit as illustrated in Fig. 1(b), this

suppression is more pronounced and we see the development

of multiple phonon steps as we approach the strong coupling

regime. The sharp initial step is just a manifestation of the

suppression of the tunneling (Ŵeff as listed in the caption of

Fig. 1; for more see Refs. [10,11]), and the additional steps

reflect the possibility of charge transport through the molecule

via inelastic processes, i.e., the absorption (emission) of one

or multiple phonons. One might compare these results to those

presented in Ref. [37] (qualitatively similar). We may note

that the steps do not occur exactly at integer multiples of

ω0 but at eV/2 � ω0, 2ω0, . . .. This shift can be interpreted

as the renormalization of the phonon frequency, as has been

discussed in Ref. [10]. We conclude that, in the antiadiabatic

limit, the electronic degrees of freedom elevate the frequency

of the molecular vibrations.

Finally, we show the effects of particle-hole asymmetry on

the I -V characteristic for the antiadiabatic case (ω0/Ŵ = 10)

in the inset of Fig. 1(b). The main effect is that the current is

blocked at low temperatures eV � max{Ŵeff , ε̃0} for sizable

electron-phonon couplings. Applying larger bias voltages can

eventually lift up the blockade, and phonon steps will appear.

These phononic features have been reported in the ex-

periments performed on suspended carbon nanotubes [33],

appearing as an external structure on top of the Coulomb

diamonds (spin-full version). However, in the mentioned elec-

tronic transport spectroscopy measurements, the vibrational

steps are sometimes accompanied with negative differential

conductance, which does not show up in our calculations for

the SAHM in the parameter regime we have considered.

Figure 2 illustrates the bias-voltage and the gate-voltage

dependence of the differential conductance defined as G =
∂J c

∂V
|�T =0. For the resonant level model (λ = 0), G reads

G =
G0

2

∑

s=±

Ŵ
2

[(seV/2) − ε̃0]2 + Ŵ2
, (24)

with G0 = e2/h. Therefore, at a given gate voltage |ε̃0| �
Ŵ/

√
3, the differential conductance exhibits two peaks; see

Figs. 2(a) and 2(c). In the presence of molecular vibrations

λ 
= 0, at low temperatures kBT ≪ Ŵeff and low bias voltages

eV ≪ ω0, we can approximate the differential conductance

analogous to Eq. (24) with replacing Ŵ by Ŵeff [= 0.85Ŵ for

the chosen parameters in Figs. 2(b) and 2(d)]. This way we

can understand the suppression of the differential conductance

at finite gate voltages; see Fig. 2(b). Close to the particle-hole

symmetric point, we get a shoulder at eV ≈ ω0 [see the curves

corresponding to ε̃0/Ŵ = 0, 0.5 in Fig. 2(d)]. For larger bias

voltages eV > ω0 we obtain multiple phonon side peaks as

shown in Figs. 2(b) and 2(d).

B. Evolution with varying the temperature

In this section we elucidate on the modification of the

charge and energy current while increasing the temperature

(TL = TR = Tph = T ). We focus on the particle-hole sym-

metric point for which the energy current enters each lead

symmetrically [see discussion in connection to Eq. (9)]. As

illustrated in Figs. 3(a) and 3(b), for a given bias voltage,

at low temperatures kBT ≪ Ŵeff, both the electrical current

and the molecular energy dissipation rate (which vanishes

for λ = 0) are independent of temperature. This is the so-

called coherent transport regime as discussed in Ref. [1].

However, at higher temperatures kBT > max{Ŵeff, ε̃0}, the

electrical current decreases with increasing temperature; see

Fig. 3(a). At such high bias voltages, there is a competition

between resonant tunneling and phonon-assisted tunneling

(satellite peaks are inside the bias window; see the Appendix).

If we increase the bias voltage further eV > ω0, the molecular

energy dissipation rate exhibits a maximum at temperatures
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FIG. 2. (a), (b) Differential conductance G/G0 as a function of bias voltage and gate voltage (stability diagram) in the antiadiabatic limit

ω0/Ŵ = 5, at kBT/Ŵ = 0.1, for (a) λ/ω0 = 0 and (b) λ/ω0 = 0.5. (c), (d) The bias-voltage dependence of G for various gate voltages for

λ/ω0 = 0, 0.5, respectively.

related to the phonon frequency, as shown in Fig. 3(b). The

latter indicates that at elevated temperatures (≈ω0/2) the

molecular vibrational degrees of freedom will be excited and

hence the charge fluctuations are suppressed (reduction of

current), while the energy dissipation rate is enhanced. Even-

tually, however, Ėmol monotonically decreases as a function

of temperature for T ≫ Ŵeff .

C. Thermoelectric transport

Finally, we investigate the interplay between transport of

charge and heat in the presence of a temperature gradient as

FIG. 3. (a) Electrical current and (b) molecular dissipation rate

as a function of temperature for varying bias voltage and coupling

λ/ω0 = 0.5, in the antiadiabatic limit ω0/Ŵ = 10, and at particle-

hole symmetry ε̃0 = 0.

well as a bias voltage. First within the linear response limit,

we compare the FRG results with the NRG data presented

in Ref. [19]. This confirms that lowest-order FRG provides

reliable results for small to intermediate λ/ω0. Next, going

beyond the linear response regime, we explore the parameter

space to find regimes in which molecular vibrations can

result in the enhancement of the efficiency of thermoelectric

generators operating in the nonlinear regime.

1. Linear thermoelectric transport

In the linear response regime, all the transport coefficients,

i.e., the electrical conductance G(T ) = ∂J c

∂V
|�T =0, the See-

beck coefficient (thermopower) S(T ) = ∂V
∂�T

|J c=0, and the

electronic contribution to the thermal conductance κe(T ) =
∂J

Q
R

∂�T
|J c=0, can be expressed in terms of the moments of the

molecular spectral function which can be accurately com-

puted within the NRG approach. Figure 4 shows the compari-

son of taking the linear response limit of the FRG results (via

calculating currents for eV, kB�T ≪ Ŵeff , kBT ) to the NRG

ones. As shown, they match remarkably well at all tempera-

tures and, only when approaching the strong coupling regime

(λ/ω0 � 1.0), we see a small deviation in the temperature

range 0.1 � kBT/Ŵ � 1.0. We may note that the deviation of

the FRG and NRG results for the thermal conductance is more

pronounced for the low-temperature peak (resonant tunnel-

ing). At such low temperatures one requires higher-order trun-

cation schemes to capture the nonperturbative physics prop-

erly for strong electron-phonon couplings. As discussed in our

previous study [19], the enhancement of the Seebeck coeffi-

cient together with the suppression of thermal conductance at

low-temperatures results in a sizable figure of merit ZT0 =
[T G(T )S2(T )]/κe(T ), useful in harvesting waste heat [50].

2. Nonlinear thermoelectric generator

In this section we study the role of molecular vibrations in

the performance of thermoelectric generators in nonequilib-
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FIG. 4. (a) Normalized electrical conductance G/G0, (b) the

Seebeck coefficient S (in units of kB/e), and (c) the normalized

electronic contribution to the thermal conductance κe/Ŵ (in units of

k2
B/e2) vs reduced temperature for various electron-phonon coupling

strengths in the antiadiabatic limit (ω0/Ŵ = 5.0) and for a fixed gate

voltage ε̃0/Ŵ = −1.0. The solid lines represent the NRG data and

the circles are obtained within FRG by calculating the charge and

heat current for an infinitesimal temperature gradient and bias volt-

age (calculating the transport coefficients by taking the derivatives

numerically).

rium scenarios. We assume that the temperature and chemical

potential of each reservoir are held fixed with the aid of some

external energy source. Assuming eV > 0 and TL = Tph =
TR − �T (with �T > 0), we are considering the situation

where the heat leaving the hot reservoir can be used to

transport charge against the bias voltage, namely when the

steady-state electrical and heat currents are J c < 0, and J
Q
R <

0. This way we can convert waste heat into electrical energy,

by charging a battery. In such a setup as shown schematically

in Fig. 5, we can define the output power P and efficiency η

as

P = −J cV, (25)

η =
output power

input heat
=

P

−J
Q
R

. (26)

In the linear response regime, the output power reads

P = −(eV 2)G(T )[1 + S(T )(�T/(eV ))], (27)

exhibiting a maximum at eV/(kB�T ) = −eS(T )/2. The ef-

ficiency at maximum power is η/ηC = (1/2)ZT0/(ZT0 +
2).Hence, within linear response, the efficiency at maximum

power is bounded above by half of the Carnot efficiency

FIG. 5. Sketch of a molecular quantum dot with vibrational

degrees of freedom trapped between two electronic leads held at

different temperatures and chemical potentials. The dashed lines

indicate the transport of charge against the bias voltage by means

of the temperature gradient, i.e., charging of a battery.

(ηC = �T/TR), with the upper bound being attained in the

ideal situation of ZT0 → ∞ [51,52]. However, beyond linear

response, the efficiency can go beyond this upper bound as has

been shown for the IRLM in Ref. [44], and is illustrated for

a single resonant level model (λ = 0) in the inset to Fig. 6(a).

In this work we are interested in characterizing the parameter

regimes for which the efficiency can be improved merely due

to the presence of the vibrational degrees of freedom.

Beyond linear response, we discuss the evolution of the

output power, and efficiency as a function of bias voltage

as we vary the phonon frequency, and the electron-phonon

coupling. In the adiabatic limit ω0 ≪ Ŵeff (vibrations are

FIG. 6. (a) Output power, (b) rescaled efficiency, and (c) molec-

ular energy dissipation rate as a function bias voltage for various

couplings and phonon frequencies, at temperatures kBTL/Ŵ = 0.1

and kBTR/Ŵ = 2.1, and for gate voltage ε̃0/Ŵ = 2. The inset shows

the efficiency as a function of output power for λ = 0, kBTL/Ŵ =
1, kBTR/Ŵ = 90, and ε̃0/Ŵ = 40.
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slow compared to charge fluctuations) the behavior is very

much similar to the noninteracting case; see Fig. 6(a). As we

increase the phonon frequency further both the output power

and efficiency, at any given bias voltage, exhibit a nonmono-

tonic behavior, i.e., they first decrease and then increase. This

observation can be traced back to the frequency dependence

of the spectral function; see the Appendix. As we progres-

sively enter the antiadiabatic regime, the resonant tunneling

is suppressed due to the finite gate voltage and the inelastic

scattering processes are becoming more relevant. However,

deep in the antiadiabatic limit (ω0/Ŵ = 20), the satellite peaks

are pushed outside the transport window and the sharp reso-

nant tunneling not only results in the enhancement of output

power and efficiency but also extends the parameter regime in

which the system can act as a generator. Figures 6(a) and 6(b)

indicate that the mentioned effects (in the antiadiabatic limit)

can be further pronounced if we increase the electron-phonon

coupling. To analyze the underlying physics, we look at the

molecular energy dissipation rate as a function of bias voltage

as shown in Fig. 6(c). While in the absence of electron-

phonon coupling, the molecular dissipation rate vanishes, at

a finite coupling λ 
= 0 the molecule dissipates energy via

the vibrational degrees of freedom. As shown in Fig. 6(c),

increasing the phonon frequency at the fixed coupling λ/ω0 =
0.5 elevates the molecular dissipation rate. However, as we

approach the antiadiabatic limit Ėmol decreases (compare the

corresponding curve for ω0/Ŵ = 2 with the one for ω0/Ŵ =
5), and eventually, deep in the antiadiabatic limit, the molec-

ular dissipation rate is quite small and it remains comparably

small when increasing the electron-phonon coupling further.

As the latter implies that less energy is being dissipated in

the phonon bath, we conclude that the suppression of the

molecular dissipation rate in the antiadiabatic limit is crucial

for the observed enhancement of the thermoelectric efficiency.

IV. SUMMARY AND PERSPECTIVE

We applied the FRG method to study the (steady-state)

thermoelectric transport through a vibrating molecular quan-

tum dot in the framework of the spinless Anderson Holstein

model. We presented the technical details of employing FRG

on the Keldysh contour to a retarded two-particle interaction.

In the linear response regime we provided comparisons of the

FRG results to the ones obtained from the NRG approach,

finding good agreement over the whole temperature range for

weak to intermediate electron-phonon couplings. We showed

that the first-order truncated FRG (controlled for weak to

intermediate electron-phonon coupligs) can indeed capture

the distinct signatures of phonon-assisted tunneling in the

current-bias-voltage characteristic beyond linear response. In

particular, we discussed the Franck-Condon blockade and the

phononic steps appearing in the bias voltage dependency of

the electrical current and the differential conductance. Finally,

we specified the parameter regime in which vibrational effects

can be used to enhance the output power, and efficiency, in the

context of thermoelectric generators.

We should emphasize that our study is valid from the low-

temperature limit T ≪ Ŵeff to the high-temperature weak-

coupling one T ≫ Ŵeff . In the latter regime the real time

diagrammatics (RTD) has been applied to study the effects

of the local electron-electron and electron-phonon interaction

in the nonlinear electrical and heat conduction [41,53,54].

Recently, a quantum-dot heat engine operating based on

the thermally driven flow of particles has been experimen-

tally realized [6]. However, it is challenging to measure the

temperatures of the hot/cold electronic leads and different

(dot-lead) tunneling rates. The RTD have been employed to

extract the mentioned parameters for the Coulomb-blockaded

single electron transistor in Ref. [6] and hence to estimate the

thermoelectric efficiency η/ηC ≈ 70% at output power of the

order of a few fW (for Ŵ = 5.9 µeV = 68 mK, TR = 1.54 K,

and TL = 0.99 K). According to our study of a molecular

quantum dot with vibrational degrees of freedom, upon using

Ŵ = 1 meV, the efficiency at maximum power (≈104 fW) can

be improved up to 40% in the antiadiabatic limit ω0/Ŵ = 20

for electron-phonon coupling λ/ω0 = 1, and TL = TR/21 =
1.16 K, as shown in Fig. 6(b).

We focused on small to intermediate electron-phonon cou-

plings (which is a limitation of the first-order truncated FRG),

and other than that there was no particular restriction on the

parameter space in which the system could be tackled. In

this light our study can be employed as a future reference

for the low temperature regime where correlation effects are

more pronounced. The SAHM is a simple model capable of

capturing phonon-assisted tunneling in molecular devices. In

a step to make the model more realistic, one can, in future,

include the short-range Coulomb interaction at the contact

points between the dot and the leads, the electron spin, and

also a local Coulomb repulsion on the molecule.
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APPENDIX: MOLECULAR SPECTRAL AND THE

DISTRIBUTION FUNCTION

We discuss the frequency structure of the molecular spec-

tral and the nonequilibrium distribution function. First, in the

absence of a bias voltage, we compare the FRG results with

the NRG ones. For weak electron-phonon coupling λ/ω0 =
0.5, the two methods agree well for low frequencies ω < ω0,

i.e., for the central quasiparticle peak, and they only deviate

slightly at ω ≈ ω0 for the satellite side peaks; see Fig. 7(a).

Within NRG, the spectral function is obtained from the

Lehmann representation by broadening the discrete spectra

with logarithmic Gaussians [55] and hence the sharpness of

the features depends on the broadening parameter used, as

illustrated in the inset of Fig. 7(a). Therefore, on the one hand,

the features calculated within FRG are sharper which is an

artifact of the first order truncation and, on the other hand,

the spectral features are more smeared within NRG due to the

broadening of the δ functions (which is a technical necessity)

[55]. However, within NRG the linear thermoelectric transport

coefficients at any temperature (kBT ≪ D) can be directly

calculated from the discrete many-body spectrum [56] and

hence are highly accurate, as shown in Fig. 4.
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FIG. 7. (a) Comparison of FRG (dashed lines) and NRG (solid lines) for the frequency dependence of the equilibrium molecular spectral

function for two different coupling strengths in the antiadiabatic limit ω0/Ŵ = 10 at kBT/Ŵ = 0.1. The inset illustrates πŴA(ω) as a function of

ω/Ŵ within NRG using two different broadening parameters, for λ/ω0 = 1. (b), (c) The evolution of the frequency dependence of the molecular

spectral function and the nonequilibrium distribution function Eq. (8) as increasing the bias voltage for ω0/Ŵ = 10 and kBT/Ŵ = 0.1. Note the

logarithmic x axis in (a) and (b). In (b) the curve corresponding to eV/ω0 = 0.5 is almost indistinguishable from the equilibrium case eV = 0,

and also eV = 4.0 from eV/ω0 = 5.0.

Figure 7(b) shows the evolution of the frequency depen-

dence of the nonequilibrium spectral function upon increas-

ing the bias voltage. While the modification of the spectral

function from its equilibrium value is minor for eV ≪ ω0, for

eV > ω0 the height of the central quasiparticle peak decreases

with increasing the bias voltage and the features are becoming

more broadened.

Figure 7(c) shows the variation of the frequency de-

pendence of the nonequilibrium distribution function, as

we increase the bias voltage. It is worth noting that the

modifications are significant for bias voltages eV/2 > ω0

in the transport window ω ∈ [−eV/2, eV/2]. In particu-

lar, at such large bias voltages, we get multiple peaks at

ω ≈ −ω0,−2ω0, . . ., which suggest that the probability of

the states being occupied whenever the energy is suffi-

cient to create one or multiple phonons is enhanced as

compared to the effective distribution feff (ω), and anal-

ogously the probability of finding the states with fre-

quency ω ≈ ω0, 2ω0, . . . to be unoccupied are substantially

decreased.
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