000857907 001__ 857907
000857907 005__ 20240709074314.0
000857907 0247_ $$2doi$$a10.1175/JAS-D-18-0094.1
000857907 0247_ $$2ISSN$$a0022-4928
000857907 0247_ $$2ISSN$$a0095-9634
000857907 0247_ $$2ISSN$$a1520-0469
000857907 0247_ $$2ISSN$$a2163-5374
000857907 0247_ $$2WOS$$aWOS:000450965500001
000857907 0247_ $$2Handle$$a2128/20691
000857907 0247_ $$2altmetric$$aaltmetric:47873907
000857907 037__ $$aFZJ-2018-06861
000857907 082__ $$a550
000857907 1001_ $$0P:(DE-HGF)0$$aKang, Min-Jee$$b0$$eCorresponding author
000857907 245__ $$aMomentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization. Part II: Impacts on the Quasi-Biennial Oscillation
000857907 260__ $$aBoston, Mass.$$bAmerican Meteorological Soc.$$c2018
000857907 3367_ $$2DRIVER$$aarticle
000857907 3367_ $$2DataCite$$aOutput Types/Journal article
000857907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1543479852_22946
000857907 3367_ $$2BibTeX$$aARTICLE
000857907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857907 3367_ $$00$$2EndNote$$aJournal Article
000857907 520__ $$aThe characteristics of small-scale convective gravity waves (CGWs; horizontal wavelengths <100 km) and their contributions to the large-scale flow in the stratosphere, including the quasi-biennial oscillation (QBO), are investigated using an offline calculation of a source-dependent, physically based CGW parameterization with global reanalysis data from 1979 to 2010. The CGW momentum flux (CGWMF) and CGW drag (CGWD) are calculated from the cloud top (source level) to the upper stratosphere using a Lindzen-type wave propagation scheme. The 32-yr-mean CGWD exhibits large magnitudes in the tropical upper stratosphere and near the stratospheric polar night jet (~60°). The maximum positive drag is 0.1 (1.5) m s−1 day−1, and the maximum negative drag is −0.9 (−0.7) m s−1 day−1 in January (July) between 3 and 1 hPa. In the tropics, the momentum forcing by CGWs at 30 hPa associated with the QBO in the westerly shear zone is 3.5–6 m s−1 month−1, which is smaller than that by Kelvin waves, while that by CGWs in the easterly shear zone (3.1–6 m s−1 month−1) is greater than that by any other equatorial planetary waves or inertio-gravity waves (inertio-GWs). Composite analyses of the easterly QBO (EQBO) and westerly QBO (WQBO) phases reveal that the zonal CGWMF is concentrated near 10°N and that the negative (positive) CGWD extends latitudinally to ±20° (±10°) at 30 hPa. The strongest (weakest) negative CGWD is in March–May (September–November) during the EQBO, and the strongest (weakest) positive CGWD is in June–August (March–May) during the WQBO. The CGWMF and CGWD are generally stronger during El Niño than during La Niña in the equatorial region.
000857907 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000857907 588__ $$aDataset connected to CrossRef
000857907 7001_ $$0P:(DE-HGF)0$$aChun, Hye-Yeong$$b1
000857907 7001_ $$0P:(DE-HGF)0$$aKim, Young-Ha$$b2
000857907 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3$$ufzj
000857907 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b4$$ufzj
000857907 773__ $$0PERI:(DE-600)2025890-2$$a10.1175/JAS-D-18-0094.1$$gVol. 75, no. 11, p. 3753 - 3775$$n11$$p3753 - 3775$$tJournal of the atmospheric sciences$$v75$$x1520-0469$$y2018
000857907 8564_ $$uhttps://juser.fz-juelich.de/record/857907/files/jas-d-18-0094.1.pdf$$yPublished on 2018-09-27. Available in OpenAccess from 2019-03-27.
000857907 909CO $$ooai:juser.fz-juelich.de:857907$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000857907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000857907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b4$$kFZJ
000857907 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000857907 9141_ $$y2018
000857907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857907 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857907 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000857907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ATMOS SCI : 2017
000857907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857907 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857907 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857907 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857907 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857907 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857907 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000857907 9801_ $$aFullTexts
000857907 980__ $$ajournal
000857907 980__ $$aVDB
000857907 980__ $$aUNRESTRICTED
000857907 980__ $$aI:(DE-Juel1)IEK-7-20101013
000857907 981__ $$aI:(DE-Juel1)ICE-4-20101013