001     857907
005     20240709074314.0
024 7 _ |a 10.1175/JAS-D-18-0094.1
|2 doi
024 7 _ |a 0022-4928
|2 ISSN
024 7 _ |a 0095-9634
|2 ISSN
024 7 _ |a 1520-0469
|2 ISSN
024 7 _ |a 2163-5374
|2 ISSN
024 7 _ |a WOS:000450965500001
|2 WOS
024 7 _ |a 2128/20691
|2 Handle
024 7 _ |a altmetric:47873907
|2 altmetric
037 _ _ |a FZJ-2018-06861
082 _ _ |a 550
100 1 _ |a Kang, Min-Jee
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization. Part II: Impacts on the Quasi-Biennial Oscillation
260 _ _ |a Boston, Mass.
|c 2018
|b American Meteorological Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1543479852_22946
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The characteristics of small-scale convective gravity waves (CGWs; horizontal wavelengths <100 km) and their contributions to the large-scale flow in the stratosphere, including the quasi-biennial oscillation (QBO), are investigated using an offline calculation of a source-dependent, physically based CGW parameterization with global reanalysis data from 1979 to 2010. The CGW momentum flux (CGWMF) and CGW drag (CGWD) are calculated from the cloud top (source level) to the upper stratosphere using a Lindzen-type wave propagation scheme. The 32-yr-mean CGWD exhibits large magnitudes in the tropical upper stratosphere and near the stratospheric polar night jet (~60°). The maximum positive drag is 0.1 (1.5) m s−1 day−1, and the maximum negative drag is −0.9 (−0.7) m s−1 day−1 in January (July) between 3 and 1 hPa. In the tropics, the momentum forcing by CGWs at 30 hPa associated with the QBO in the westerly shear zone is 3.5–6 m s−1 month−1, which is smaller than that by Kelvin waves, while that by CGWs in the easterly shear zone (3.1–6 m s−1 month−1) is greater than that by any other equatorial planetary waves or inertio-gravity waves (inertio-GWs). Composite analyses of the easterly QBO (EQBO) and westerly QBO (WQBO) phases reveal that the zonal CGWMF is concentrated near 10°N and that the negative (positive) CGWD extends latitudinally to ±20° (±10°) at 30 hPa. The strongest (weakest) negative CGWD is in March–May (September–November) during the EQBO, and the strongest (weakest) positive CGWD is in June–August (March–May) during the WQBO. The CGWMF and CGWD are generally stronger during El Niño than during La Niña in the equatorial region.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chun, Hye-Yeong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kim, Young-Ha
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 3
|u fzj
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 4
|u fzj
773 _ _ |a 10.1175/JAS-D-18-0094.1
|g Vol. 75, no. 11, p. 3753 - 3775
|0 PERI:(DE-600)2025890-2
|n 11
|p 3753 - 3775
|t Journal of the atmospheric sciences
|v 75
|y 2018
|x 1520-0469
856 4 _ |u https://juser.fz-juelich.de/record/857907/files/jas-d-18-0094.1.pdf
|y Published on 2018-09-27. Available in OpenAccess from 2019-03-27.
909 C O |o oai:juser.fz-juelich.de:857907
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129117
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ATMOS SCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21