000857919 001__ 857919
000857919 005__ 20240711085700.0
000857919 0247_ $$2doi$$a10.1016/j.jpowsour.2018.10.089
000857919 0247_ $$2ISSN$$a0378-7753
000857919 0247_ $$2ISSN$$a1873-2755
000857919 0247_ $$2WOS$$aWOS:000452945600011
000857919 037__ $$aFZJ-2018-06873
000857919 082__ $$a620
000857919 1001_ $$00000-0002-2760-8337$$aKehne, P.$$b0$$eCorresponding author
000857919 245__ $$aSc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance
000857919 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000857919 3367_ $$2DRIVER$$aarticle
000857919 3367_ $$2DataCite$$aOutput Types/Journal article
000857919 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552999047_20582
000857919 3367_ $$2BibTeX$$aARTICLE
000857919 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857919 3367_ $$00$$2EndNote$$aJournal Article
000857919 520__ $$aAll-solid-state sodium batteries are attractive due to the abundance of sodium and advantageous for safe battery operation by avoiding flammable organics and liquids and suppressed dendrite formation. Currently, the lack of a chemically stable sodium solid electrolyte with high ion conductivity at room temperature is one of the challenges for future development of sodium batteries. Herein, we present a NaxCoO2/Nasicon/Na thin-film model sodium solid-state battery using a Sc-substituted Nasicon solid electrolyte with a high ionic conductivity of 4 × 10⁻³ S cm⁻¹. The battery shows a high specific capacity of 150 mAh g⁻¹ at room-temperature and discharge rates of up to 6C. Excellent chemical stability of this solid electrolyte at high voltages of up to 4.2 V increases the accessible sodium (de)intercalation range and battery capacity. Direct extraction of the interface resistances between the electrode materials of the thin-film model cell using electrochemical impedance spectroscopy gives a unique opportunity of correlation the electrochemical performance with properties of electrode materials and their interfaces.
000857919 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857919 588__ $$aDataset connected to CrossRef
000857919 7001_ $$00000-0002-8955-2922$$aGuhl, C.$$b1
000857919 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b2
000857919 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b3
000857919 7001_ $$0P:(DE-HGF)0$$aAlff, L.$$b4
000857919 7001_ $$0P:(DE-HGF)0$$aHausbrand, R.$$b5
000857919 7001_ $$0P:(DE-HGF)0$$aKomissinskiy, P.$$b6
000857919 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.10.089$$gVol. 409, p. 86 - 93$$p86 - 93$$tJournal of power sources$$v409$$x0378-7753$$y2019
000857919 8564_ $$uhttps://juser.fz-juelich.de/record/857919/files/1-s2.0-S0378775318311972-main.pdf$$yRestricted
000857919 8564_ $$uhttps://juser.fz-juelich.de/record/857919/files/1-s2.0-S0378775318311972-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857919 909CO $$ooai:juser.fz-juelich.de:857919$$pVDB
000857919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b2$$kFZJ
000857919 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000857919 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857919 9141_ $$y2019
000857919 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000857919 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857919 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857919 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857919 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857919 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857919 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857919 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857919 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857919 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857919 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857919 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857919 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000857919 920__ $$lyes
000857919 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000857919 980__ $$ajournal
000857919 980__ $$aVDB
000857919 980__ $$aI:(DE-Juel1)IEK-1-20101013
000857919 980__ $$aUNRESTRICTED
000857919 981__ $$aI:(DE-Juel1)IMD-2-20101013