000857920 001__ 857920
000857920 005__ 20240712113127.0
000857920 0247_ $$2doi$$a10.1038/s41598-018-30478-7
000857920 0247_ $$2Handle$$a2128/23501
000857920 0247_ $$2altmetric$$aaltmetric:46379228
000857920 0247_ $$2pmid$$apmid:30097645
000857920 0247_ $$2WOS$$aWOS:000441300700014
000857920 037__ $$aFZJ-2018-06874
000857920 082__ $$a600
000857920 1001_ $$0P:(DE-HGF)0$$aLunghammer, S.$$b0
000857920 245__ $$aFast Na ion transport triggered by rapid ion exchange on local length scales
000857920 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2018
000857920 3367_ $$2DRIVER$$aarticle
000857920 3367_ $$2DataCite$$aOutput Types/Journal article
000857920 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575013360_25884
000857920 3367_ $$2BibTeX$$aARTICLE
000857920 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857920 3367_ $$00$$2EndNote$$aJournal Article
000857920 520__ $$aThe realization of green and economically friendly energy storage systems needs materials with outstanding properties. Future batteries based on Na as an abundant element take advantage of non-flammable ceramic electrolytes with very high conductivities. Na3Zr2(SiO4)2PO4-type superionic conductors are expected to pave the way for inherently safe and sustainable all-solid-state batteries. So far, only little information has been extracted from spectroscopic measurements to clarify the origins of fast ionic hopping on the atomic length scale. Here we combined broadband conductivity spectroscopy and nuclear magnetic resonance (NMR) relaxation to study Na ion dynamics from the µm to the angstrom length scale. Spin-lattice relaxation NMR revealed a very fast Na ion exchange process in Na3.4Sc0.4Zr1.6(SiO4)2PO4 that is characterized by an unprecedentedly high self-diffusion coefficient of 9 × 10−12 m2s−1 at −10 °C. Thus, well below ambient temperature the Na ions have access to elementary diffusion processes with a mean residence time τNMR of only 2 ns. The underlying asymmetric diffusion-induced NMR rate peak and the corresponding conductivity isotherms measured in the MHz range reveal correlated ionic motion. Obviously, local but extremely rapid Na+ jumps, involving especially the transition sites in Sc-NZSP, trigger long-range ion transport and push ionic conductivity up to 2 mS/cm at room temperature.
000857920 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000857920 588__ $$aDataset connected to CrossRef
000857920 7001_ $$0P:(DE-HGF)0$$aPrutsch, D.$$b1
000857920 7001_ $$0P:(DE-HGF)0$$aBreuer, S.$$b2
000857920 7001_ $$00000-0002-2074-941X$$aRettenwander, D.$$b3
000857920 7001_ $$00000-0002-9260-9117$$aHanzu, I.$$b4
000857920 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b5$$ufzj
000857920 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b6
000857920 7001_ $$00000-0001-9706-4892$$aWilkening, H. M. R.$$b7$$eCorresponding author
000857920 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-018-30478-7$$gVol. 8, no. 1, p. 11970$$n1$$p11970$$tScientific reports$$v8$$x2045-2322$$y2018
000857920 8564_ $$uhttps://juser.fz-juelich.de/record/857920/files/s41598-018-30478-7.pdf$$yOpenAccess
000857920 8564_ $$uhttps://juser.fz-juelich.de/record/857920/files/s41598-018-30478-7.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857920 909CO $$ooai:juser.fz-juelich.de:857920$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b5$$kFZJ
000857920 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b6$$kFZJ
000857920 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000857920 9141_ $$y2019
000857920 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857920 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000857920 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857920 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857920 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000857920 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000857920 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000857920 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000857920 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857920 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857920 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857920 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857920 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857920 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857920 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857920 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857920 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857920 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000857920 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857920 920__ $$lyes
000857920 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000857920 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x1
000857920 9801_ $$aFullTexts
000857920 980__ $$ajournal
000857920 980__ $$aVDB
000857920 980__ $$aUNRESTRICTED
000857920 980__ $$aI:(DE-Juel1)IEK-12-20141217
000857920 980__ $$aI:(DE-Juel1)IEK-1-20101013
000857920 981__ $$aI:(DE-Juel1)IMD-4-20141217
000857920 981__ $$aI:(DE-Juel1)IMD-2-20101013