001     857924
005     20240709082129.0
037 _ _ |a FZJ-2018-06878
100 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 8th International Symposium on Functional Materials
|g ISFM-8
|c Aachen
|d 2018-08-20 - 2018-08-23
|w Germany
245 _ _ |a Fast, faster, fastest: Ionic conduction in NaSICON materials
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1574948880_25886
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a Na+ Super-Ionic CONductors (NaSICON) consist of a 3D framework of corner-shared ZrO6 octahedra and (Si,P)O4 tetrahedra, joined by inter¬connected channels providing a Na+ conduction pathway between Na(1) and Na(2) positions. The original composition Na3Zr2Si2PO12 can be modified according to the generalized formula as Na1+2w+x-y+z M2+w M3+x M5+y Zr2-w-x-y (SiO4)z (PO4)3-z. To anticipate a fast conducting NaSICON material, the composition should follow specific design parameters:1. The size of transition metal cations (reff = 0.72 Å)2. The Na content (3 – 3.5 moles Na/formula unit)3. The crystal structure (monoclinic distortion affecting the structural bottleneck)So far three series of NaSICON materials were designed to verify the proposed design parameters: Na3+xScxZr2-xSi2PO12, Na3+xSc2SixP3-xO12 and Na1+2xAlxYxZr2-2xSiyP3-yO12. For the first two series the maximum conductivity was indeed obtained for x = 0.4, with the highest Na+ ion conductivity in polycrystalline NaSICON materials ever reported for Na3.4Sc0.4Zr1.6Si2PO12 (4 mS cm-1).
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
909 C O |o oai:juser.fz-juelich.de:857924
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 1
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21