000857978 001__ 857978
000857978 005__ 20240711101548.0
000857978 0247_ $$2doi$$a10.1149/2.0121907jes
000857978 0247_ $$2ISSN$$a0013-4651
000857978 0247_ $$2ISSN$$a0096-4743
000857978 0247_ $$2ISSN$$a0096-4786
000857978 0247_ $$2ISSN$$a1945-6859
000857978 0247_ $$2ISSN$$a1945-7111
000857978 0247_ $$2ISSN$$a2002-2015
000857978 0247_ $$2ISSN$$a2156-7395
000857978 0247_ $$2Handle$$a2128/21945
000857978 0247_ $$2WOS$$aWOS:000462536900001
000857978 037__ $$aFZJ-2018-06925
000857978 082__ $$a660
000857978 1001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b0$$eCorresponding author$$ufzj
000857978 245__ $$aTime Dependence of the Open Circuit Potential of Platinum Disk Electrodes in Half Cell Experiments
000857978 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2019
000857978 3367_ $$2DRIVER$$aarticle
000857978 3367_ $$2DataCite$$aOutput Types/Journal article
000857978 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553881097_23697
000857978 3367_ $$2BibTeX$$aARTICLE
000857978 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857978 3367_ $$00$$2EndNote$$aJournal Article
000857978 520__ $$aThe time dependence of the open circuit potential under oxygen and air is characterized by half-cell experiments in the temperature range of 30°C to 80°C. The data is analyzed with the aid of a macroscopic model that captures the effect of a coupled reaction of platinum surface oxidation and the oxygen reduction reaction. The aim of the model is to facilitate an understanding of the principle reactions from an engineering perspective. Two modeling approaches, namely ‘gas electrode’ and ‘flooded electrode’, are compared. It can be shown that the difference between the theoretical Nernst potential and open circuit potential can be described by two major effects: gas solubility in the electrolyte and platinum surface oxidation. The fact that platinum surface oxidation does not lead to a ‘fully oxidized surface’ has strong implications for the design of accelerated stress tests, which is briefly discussed. 
000857978 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000857978 588__ $$aDataset connected to CrossRef
000857978 7001_ $$0P:(DE-Juel1)168222$$aCai, Yun$$b1$$ufzj
000857978 7001_ $$0P:(DE-Juel1)168240$$aLi, Ruiyu$$b2$$ufzj
000857978 7001_ $$0P:(DE-Juel1)5106$$aFroning, Dieter$$b3$$ufzj
000857978 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b4$$ufzj
000857978 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0121907jes$$gVol. 166, no. 7, p. F3098 - F3104$$n7$$pF3098 - F3104$$tJournal of the Electrochemical Society$$v166$$x0013-4651$$y2019
000857978 8564_ $$uhttps://juser.fz-juelich.de/record/857978/files/J.%20Electrochem.%20Soc.-2019-Reimer-F3098-104.pdf$$yOpenAccess
000857978 8564_ $$uhttps://juser.fz-juelich.de/record/857978/files/J.%20Electrochem.%20Soc.-2019-Reimer-F3098-104.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000857978 909CO $$ooai:juser.fz-juelich.de:857978$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000857978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich$$b0$$kFZJ
000857978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168222$$aForschungszentrum Jülich$$b1$$kFZJ
000857978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168240$$aForschungszentrum Jülich$$b2$$kFZJ
000857978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5106$$aForschungszentrum Jülich$$b3$$kFZJ
000857978 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b4$$kFZJ
000857978 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b4$$kRWTH
000857978 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000857978 9141_ $$y2019
000857978 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857978 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857978 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000857978 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2017
000857978 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857978 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857978 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857978 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857978 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000857978 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000857978 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857978 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857978 920__ $$lyes
000857978 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000857978 9801_ $$aFullTexts
000857978 980__ $$ajournal
000857978 980__ $$aVDB
000857978 980__ $$aUNRESTRICTED
000857978 980__ $$aI:(DE-Juel1)IEK-3-20101013
000857978 981__ $$aI:(DE-Juel1)ICE-2-20101013