000857980 001__ 857980
000857980 005__ 20240708133057.0
000857980 0247_ $$2doi$$a10.1016/j.ijhydene.2019.02.166
000857980 0247_ $$2ISSN$$a0360-3199
000857980 0247_ $$2ISSN$$a1879-3487
000857980 0247_ $$2altmetric$$aaltmetric:57672972
000857980 0247_ $$2WOS$$aWOS:000466618300081
000857980 037__ $$aFZJ-2018-06927
000857980 082__ $$a620
000857980 1001_ $$0P:(DE-Juel1)168242$$aAndersson, Martin$$b0$$eCorresponding author$$ufzj
000857980 245__ $$aModeling of Droplet Detachment Using Dynamic Contact Angles in Polymer Electrolyte Fuel Cell Gas Channels
000857980 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000857980 3367_ $$2DRIVER$$aarticle
000857980 3367_ $$2DataCite$$aOutput Types/Journal article
000857980 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619164891_2072
000857980 3367_ $$2BibTeX$$aARTICLE
000857980 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857980 3367_ $$00$$2EndNote$$aJournal Article
000857980 520__ $$aClimate change, energy security and air pollution are all motivators for the further development of fuel cells. A volume of fluid approach was used to investigate the impact of dynamic contact angle boundary conditions (Kistler model), mainly at the gas diffusion layer surface but also at the channel wall, of a polymer electrolyte fuel cell gas channel. From this study, it is clear that a dynamic contact angle boundary condition, with advancing and receding contact angles, influences the droplet detachment characteristics, for example, the detachment time and droplet size. Implementing dynamic contact angle boundary conditions for a thin channel causes the droplet, after being reattached to the wall on the side opposite the GDL, to flow very slowly when attached to the wall, until it is merged with a second droplet and they exit the channel (but remain attached to the wall) fairly quickly. Similar phenomena are not observed while using a static contact angle.
000857980 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000857980 536__ $$0G:(DE-Juel1)jara0070_20131101$$aFlexible Simulation of Fuel Cells with OpenFOAM (jara0070_20131101)$$cjara0070_20131101$$fFlexible Simulation of Fuel Cells with OpenFOAM$$x1
000857980 588__ $$aDataset connected to CrossRef
000857980 7001_ $$0P:(DE-HGF)0$$aVukcevic, V.$$b1
000857980 7001_ $$0P:(DE-Juel1)168221$$aZhang, Shidong$$b2$$ufzj
000857980 7001_ $$0P:(DE-HGF)0$$aQi, Y.$$b3
000857980 7001_ $$0P:(DE-HGF)0$$aJasak, H.$$b4
000857980 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b5$$ufzj
000857980 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6$$ufzj
000857980 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.02.166$$gVol. 44, no. 21, p. 11088 - 11096$$n21$$p11088 - 11096$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000857980 909CO $$ooai:juser.fz-juelich.de:857980$$pVDB
000857980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168242$$aForschungszentrum Jülich$$b0$$kFZJ
000857980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168221$$aForschungszentrum Jülich$$b2$$kFZJ
000857980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b5$$kFZJ
000857980 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000857980 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000857980 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000857980 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000857980 9141_ $$y2019
000857980 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000857980 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857980 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857980 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857980 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857980 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857980 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857980 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857980 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857980 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857980 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857980 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857980 920__ $$lyes
000857980 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000857980 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000857980 980__ $$ajournal
000857980 980__ $$aVDB
000857980 980__ $$aI:(DE-Juel1)IEK-3-20101013
000857980 980__ $$aI:(DE-82)080012_20140620
000857980 980__ $$aUNRESTRICTED
000857980 981__ $$aI:(DE-Juel1)ICE-2-20101013