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ABSTRACT

Today’s supercomputers gain their performance through a rapidly increasing
number of cores per node. To tackle issues arising from those developments
new parallelization approaches guided by modern software engineering are in-
evitable. The concept of task-based parallelization is a promising candidate to
overcome many of those challenges. However, for latency-critical applications,
like molecular dynamics, available tasking frameworks introduce considerable
overheads. In this work a lightweight task engine for latency-critical applica-
tions is proposed. The main contributions of this thesis are a static data-flow
dispatcher, a type-driven priority scheduler and an extension for communication-
enabled tasks. The dispatcher allows a user-configurable mapping of algorithmic
dependencies in the task-engine at compile-time. Resolving these dependencies
at compile-time reduces the run-time overhead. The scheduler enables the pri-
oritized execution of a critical path of an algorithm. Additionally, the priorities
are deduced from the task type at compile-time as well. Furthermore, the afore-
mentioned task engine supports inter-node communication via message passing.
The provided communication interface drastically simplifies the user interface of
inter-node communication without introducing additional performance penalties.

This is only possible by distinguishing two developer roles — the library developer
and the algorithm developer. All proposed components follow a strict guideline to
increase the maintainability for library developers and the usability for algorithm
developers. To reach this goal a high level of abstraction and encapsulation is
required in the software stack. As proof of concept the communication-enabled
task engine is utilized to parallelize the FMM for molecular dynamics.

xiii






INTRODUCTION

Computational science has become “The ‘Third Pillar’ of 215t Century Science” [100,
pp. 12] positioned between theory and experiment blurring the line between
both of them. Several scientific breakthroughs like the decoding of the human
genome [45] or the space missions to Mars [116] would have been impossible
without computational science and computer simulations. Fields like drug re-
search utilize computer simulations to discover new use cases and allow to predict
unknown side effects. For almost all fields of science, computer simulations have
become virtually indispensable. The resources required for those computer sim-
ulations form the rising field of high performance computing (HPC). The rapid
increase in affordable computational resources and powerful hardware enables
simulations that have been unthinkable decades ago. Nowadays, large scale sim-
ulations required for the weather forecast [24, 119] or simulations of quantum
computers [120] are only possible because supercomputers offer a vast amount of
computational power. This development took on momentum and with exascale in
sight [79] further scientific insights will be discovered by an increasing field of
applications.

However, utilizing exascale hardware to the full extend will be challenging.
In the past, supercomputers gained most of their performance by adding more
nodes to the system. Additionally, an almost free performance increase came
from the raised clock-speed of the processors and shrinking die sizes due to
Moore’s law [84]. A few years into the new millennium the clock-speed stag-
nated and further performance improvements were only possible through the
advent of multicore processors. This also changed the subsequent development of
supercomputers. Instead of increasing the performance by increasing the num-
bers of nodes, the nodes themselves became more powerful (see Figure 1.1). For
the ongoing development towards exascale this means, the number of cores per
node will increase rapidly, whereas the number of nodes will increase only mod-
erately [11]. This inevitable leads to a more complex node. Additionally, new
and wider vector instructions or the introduction of non-uniform memory access
(NUMA) contribute to the complexity as well. Besides classical CPUs also new
architectures like GPUs or other accelerators emerged, requiring completely differ-
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Figure 1.1: A comparison of the development of the CPU frequency and the number of
cores per node in the TOP500 list [111].
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Figure 1.2: Flynn’s Taxonomy and Johnson extension for MIMD architectures.

ent programming models. Referring to Flynn’s extended taxonomy [40, 67] this
prolonged trend holds parallelization potentials on many levels of the available
hardware (see Figure 1.2).

The overall development of HPC led to many diverse systems already today,
offering quadrillion (10'°) of floating-point operations per second. For systems
passing the exascale with quintillion (10'8) of floating-point operations the hard-
ware will become even more complicated in comparison [4]. These developments
are ubiquitous in HPC and will also enforce changes on the software development.
This work will contribute to the handling of rapidly developing hardware and
focuses on the software engineering challenges.

How did the software development for HPC evolve? For the parallelization, the
first supercomputer applications used only inter-node communication techniques
to distribute the data between nodes in an otherwise sequential program. With
the advent of multicore processors shared memory parallelization was required for
the first time. Exploiting loop-level parallelism by sprinkling pragmas throughout
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Figure 1.3: The separation of concerns splits the monolithic application into a high level
and a low level layer.
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Figure 1.4: The distinguishing of two developer roles in HPC. The library developer is
responsible for the low level library and hardware abstraction. The library developer
provides an easy-to-use interface to the algorithm developer. The algorithm developer
is responsible for the algorithm and the implementation of the algorithm using the high
level interfaces provided by the library developer.

the sequential code at each loop construct solved the problem initially. However,
this led to programs with millions of lines of code, being hardly maintainable and
unable to adapt to even more sophisticated hardware features like vectorization.

To remain sustainable modern software requires abstractions of hardware in a
more generic manner. Additionally, the separation of concerns between algorithm-
specific parts of the program and the parallelization and hardware specific parts
should be enforced (see Figure 1.3). In the past, for most programs a single
domain scientist was responsible for everything: the algorithm, implementation,
parallelization, optimization and porting. With the rapid development of new
hardware and the thereby increased complexity, this is not manageable by a single
software developer anymore. Therefore, the proposed separation of concerns in
the software must also be considered for the software developers themselves.

This can be achieved by distinguishing two different software developer roles
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in HPC (see Figure 1.4):

The Library Developer is responsible for the low level libraries encapsulating
hardware features and parallelization. The library developer is also respon-
sible for providing a high level interface which can be used by the algorithm
developer that ideally hides most of the non-performance-critical features.

The Algorithm Developer is responsible for the high level algorithmic details
and the implementation of the algorithm using the high level interfaces
provided by the library developer.

Algorithmic development should be independent of specific hardware. This differ-
entiation allows the individual developer to focus on the challenges specifically
arising in their field of expertise. The challenges in providing parallelization tools
and low level implementations are shifted towards computer science. Simultane-
ously it relieves the library developer from the responsibility of fully understanding
algorithmic details and vice versa.

Even though this work focuses on the library developer side of the classification
a use case for the proposed concepts is required. For this purpose the Fast Multi-
pole Method (FMM) for solving long range interactions in molecular dynamics
(MD) was chosen. This method exhibits parallelization challenges already today
that other application might not experience until the exascale era. In MD the
particle movement of a fixed particle system is simulated usually encompassing
thousands to millions of particles. The simulation is done in discrete time steps
each evaluating the long range potentials and forces using the FMM. For a reason-
able simulation time millions of time steps are necessary. To avoid an excessive
overall runtime, the single step runtime of the FMM must therefore be in the range
of only a few milliseconds. To reach that goal massive parallelism needs to be
exploited and therefore each compute unit (core) will only hold a few particles.
But for a few particles per core only very little computations per core are required
and data transfer and communication overheads become apparent. These kind of
problems will be called latency-critical problems in this work.

To perform the parallelization of latency-critical problems, the library developer
needs to provide a programming model suited for the task at hand. The program-
ming model of this work is restricted to the shared memory parallelization and
distributed parallelization in Flynn’s taxonomy (see Figure 1.2). For the paral-
lelization a coupled solution for both problems will be presented. This stands in
contrast to all-inclusive solutions for inter-node and intra-node parallelization like
HPX [70], Charm++ [71], PaRSEC [19] and DAGuE [18]. These libraries work
well for coarse-grained tasks encompassing a sufficient number of computations.
However, for latency-critical problems fine-grained tasks must be used and those
approaches do not provide sufficient control to adapt the parallelization layer to
the requirements of the algorithm.

For the parallelization of latency-critical application it is necessary to control
the program flow on all levels. Therefore, the parallelization concepts and tools
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proposed within this work deal with intra-node and inter-node parallelization
separately. In the chapter on intra-node parallelization current state of the art
parallelization approaches will be discussed and a task engine specialized for
latency-critical problems will be proposed. This task engine includes two unique
components not available in other frameworks, namely the static data-flow dis-
patcher and the type-driven priority scheduler. The static data-flow dispatcher is
compile-time configurable with algorithmic dependencies. The type-driven prior-
ity scheduler, schedules tasks using different priorities which are automatically
deduced from the type of the task.

For the inter-node parallelization existing approaches and libraries will be
discussed in the chapter inter-node parallelization. There, the task engine will
be extended with a communication layer. This communication layer simplifies
the communication interface for message passing and provides an easy-to-use
high level interface for the algorithm developer. Additionally, initial concepts for
task-based communication using fine-grained tasks will be shown.

NOMENCLATURE

For the remainder of this work the following nomenclature is used: A super-
computer consists of several compute nodes, which are connected with a fast
network. A compute node has one or more sockets. A processor refers to a single
socket CPU. This processor consists of one or more cores. On a core one or more
hardware-threads are executed, depending on simultaneous multithreading (SMT).

1.1 DESIGN GUIDELINES

The implementation follows several well-established software design guidelines
and principles. The following four design goals are the most important ones:

> Correctness,
¥ Maintainability,
¥ Sustainability and

> Performance portability.

MAINTAINABILITY
For the long-term use of a library it is very important to provide a maintainable
and readable code base. Without this requirement, it is hard to extend the library
at a later point in time or adapt to new circumstances. During the implementation
phase this guideline has been enforced with test-driven development [75].

An additional strategy is to stick to well established coding principles. One
famous principle is the object oriented design principle SOLID [77]. SOLID consists
of the following five sub-principles:

The single-responsibility principle (S) states, that every class or module should
only have a single responsibility. This results in code with a high level of
encapsulation.
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The open/closed principle (O) states, that the software should be “open for
extension, but closed for modification” [80]. This means, that changes to a
component or a class should only be possible by extension like inheritance,
but not by changing the existing implementation itself.

The Liskov substitution principle (L) states, that properties valid for one type
should still be valid when exchanging this type with its sub-type [76].

The interface segregation principle (I) states, small interfaces are better than
big ones and thereby often too general interfaces.

The dependency-inversion principle (D) suggest to better depend on abstrac-
tions instead of concrete classes.

These principles already require code with a high level of abstraction and en-
capsulation. Additionally, the “Don’t repeat yourself” (DRY) principle [59] was
followed in the implementation.

PERFORMANCE PORTABILITY

For applications in HPC it is expected to show good performance on the latest
hardware platform. Due to the frequent changes and availability of diverse super-
computers, nowadays it is required to exhibit convincing performance on many
different platforms. This requirement is herein called performance portability.

As described before the computing hardware changes in many directions. To
handle quantitative changes in hardware effectively a high level of abstraction
is required. For legacy software written in Fortran or C this means a lot of work
porting and optimizing code to new supercomputers. Adapting to all changed
hardware features and optimizing historically grown software by hand is time
consuming and potentially prone to errors.

This problem can be partially solved by abstracting away the target hardware
in an generic manner. Using template-meta-programming (TMP) features of
C++ this can be achieved without constantly porting software by hand. Such an
approach will pose a challenge to library developers, but ultimately will help
domain scientists to harvest the performance of the target hardware without the
need to understand hardware details. The herein proposed abstractions come with
zero runtime overhead and are to this extend only possible using C++ and TMP.
This makes C++ a first choice for solving the challenges for the programming of
current and future supercomputers.

1.2 HPC AND C++

Parallelization of supercomputers cannot be discussed without putting it in context
to the used programming language. The most common programming languages
supported on supercomputers are Fortran, C and C++, whereas Fortran an C are
the most prevailing [121, 82]. Only a few application are using C++ and when it
comes to modern C++ with template-meta-programming, the numbers are even
lower.



1.2 HPC and C++

This fact is surprising since C++ has a lot to offer — especially for HPC. C++ is a
mature industrial standard [66] with an established standardization process and
a vivid community. The most important extension of the language for parallel
computing was added in the 2011 standard. This extension concerned the memory
model and the multithreaded execution capabilities directly inscribed in the
language [16, 118]. Before the availability of this extension, non of the languages
used in HPC were inherently parallel. It was required to use external libraries like
pthreads [89] but this raised thread safety concerns [15].

The upcoming HPC technologies are not uniform anymore and the HPC ecosys-
tem will be more diverse in future. As mentioned before, this requires a high
level of abstraction in order to reach performance portability more easily and C++
has a solution for that as well. Zero-overhead abstraction [49] is one of the main
design principles of the C++ language itself. As the founder of C++ B. Stroustrup
said [106]:

In general, C++ implementations obey the zero-overhead principle:
What you don’t use, you don’t pay for. And further: What you do use,
you couldn’t hand code any better.

Zero-overhead abstraction refers specifically to inheritance and template-meta-
programming (TMP). This work is heavily based on modern C++ features and
especially on TMP abstraction capabilities. In the following the foundational
concepts and special language features required for the intra-node and inter-node
parallelization are laid out.

COMPILE-TIME ABSTRACTION

Zero-overhead abstractions have been possible by using pre-processor macros in C,
Fortran and C++. Besides pre-processor macros, C++ additionally offers templates.
Both, C++ templates and pre-processor macros are evaluated at compile time. But
in contrast to pre-processor macros, templates are part of the type system of C++.
This means, that potential bugs that could arise at runtime or stay undetected,
will be identified at compile-time. This increases the robustness of the code [107]
tremendously.

Thus, besides the increased performance, maintainability and increased robust-
ness are the main reasons for using C++ templates. Since it is possible to have
many fine-grained layers of software designed in such a way, true separation of
concerns becomes possible.

GENERIC PROGRAMMING

Generic programming describes the term of program code being independent
of the actual type. This is well known from generic data structures like the
vector in the C++ standard template library. The implementation of those data
structures is available independently of the concrete type. Instead of concrete
types, placeholders are used. These placeholders are called template parameters.
These data structures can be used by applying the desired type. The compiler will
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generate the code by replacing the placeholder with the desired type. Since the
template parameters are replaced by concrete types at compile-time this comes
without runtime overhead. This makes generic programming to an preeminent
zero cost abstraction feature.

C++ offers class and function templates. These functions or classes may have
template parameters. Template parameters can either be types or non-type tem-
plate parameter like integers. Since C++11 it is also possible to use template packs,
which is an arbitrary number of template parameters defined in a single pack.

TEMPLATE SPECIALIZATION

The original use case of templates in C++ was generic programming. Template-
meta-programming (TMP) itself and the Turing completeness [115] of TMP were
discovered by accident. However, the mature feature set and abstraction capabili-
ties of TMP makes it indispensable for this work. Not utilizing TMP would require
to implement a lot of compiler generated code by hand in order to reach a compa-
rable performance and portability. This would sweep away the configurability of
any library developed today.

Template specialization is the first step towards template-meta-programming
(TMP). Function templates as well as class templates can be fully specialized. This
means, the specialized implementation can be provided for a certain combination
of template parameters. This is especially helpful for implementing generalized
compute kernels not depending on a specific floating point type.

Additionally, class templates have the capability of partial template specializa-
tion. In contrast to the full template specialization, only parts of the template
parameter list needs to be specialized. The remainder of the template parameters
are still generic.

COMPILE-TIME BRANCHING

With a classical if-then-else-condition a branch of the control-flow can be deter-
mined. If it is possible to evaluate the condition at compile-time, it would be
ideal to choose the branch at compile-time. With C++ and TMP this is possible.
Therefore, compile-time branching is an important feature for the implementation
of reusable code.

One concept facilitating compile-time branching is “substitution failure is not
an error” (SFINAE). The concept of SFINAE can be described as follows: An in-
valid substitution of a template parameter during function overload resolution
does not result in an compile-time error, but rather discards this function defini-
tion. This means, the same function could be implemented multiple times with
different template parameter definitions. For calling the function template, the
template parameters need to be applied either explicitly or by template argument
deduction. During the overload resolution the applied parameters are substituted
in all function definitions. The substitution may lead to an ill-formed function
definitions, causing a substitution failure. However, this failure is not an error
and the function will be discarded from the overload resolution.
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LISTING 1.1:

1

2 template <typename T>

3 typename std::enable_if<condition, void>::type foo() {...}
4

5

6 template <typename T>

7 typename std::enable_if<!condition, void>::type foo() {...}

—————————————— AbstractBase < ConcreteDerived >

ConcreteDerived

Figure 1.5: The UML class diagram of static inheritance using CRTP.

It is important, that only one function definition remains, otherwise the function
definition would be ambiguous.

For the concrete implementations the type trait std: :enable_if can be used.
An example using SFINAE and enable_if is shown in Listing 1.1. In case the
condition used evaluates to true the first function implementation is used (see
line 3), otherwise the second implementation will be executed (see line 7).

STATIC INHERITANCE

Static inheritance could be used to share behavior between classes without in-
troducing virtual inheritance overhead. The advantage is the reduction of code
duplication and hence an increased robustness and maintainability. One TMP
technique enabling static inheritance is called curiously recurring template pat-
tern (CRTP).

For CRTP a derived class inherits from a common templated base class (see
Figure 1.5). Listing 1.2 shows an example of CRTP. The base class (AbstractBase)

LISTING 1.2:

template <typename Derived>

struct AbstractBase {

Derived & derived() {

return *static_cast<Derived *>(this);

1
2

3

4
5}
6 void virtual method() {

7 derived().virtual_method();

8

9 };

10

11 struct ConcreteDerived : AbstractBase<ConcreteDerived> {
12 void virtual_method() {3}

13 };
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uses a template parameter (Derived) which reflects the derived class. This means,
strictly speaking derived classes do not have a common base class due to their
different template parameters. In the base class it is possible to statically cast the
object towards an instance of the derived class shown in the method derived().
With the help of such a cast, shared behavior can be implemented in the base class.
By implementing the same method in the derived class, the method of the base
class can be hidden. Additionally, methods behaving like virtual inheritance can
be implemented. In the example given in the listing, the method virtual method
calls the implementation of the derived class. This is done by calling the method
on the derived class using the cast method derived().

1.3 MOLECULAR DYNAMICS

Molecular dynamics (MD) simulations characterize the evolution of a particle
system over time. Therefore, the movement of particles due to their interactions is
simulated. MD has a long history in computational science starting from the late
sixties [3]. There are several MD implementations like Gromacs [56], NAMD [88]
or Amber [22] available today. Due to the high demand in computational re-
sources, also special purpose hardware was developed to compute MD simulations
like MD Grape [46] and D.E. Shaw’s Anton [103].

The simulation itself is performed in discrete time steps. These time steps
are computed in the so called MD-loop which is shown in a simplified diagram
in Figure 1.6. In general an MD loop can be described as follows. The long-range
and short-range interactions (potentials and forces) are computed. The computed
forces are used to determine the new particle positions in the next time step. Then,
the process starts over again using the new particle coordinates. It should be
mentioned, that the loop introduces an implicit synchronization. The integration
can only take place after all interactions are computed.

The simulated particle systems usually consist of hundred thousands to several
million of charged particles. These particles might resemble proteins, DNA or even
bio-molecules like whole viruses [124]. Since the common time step required
for those MD simulations is in the range of femtoseconds and the desired total
simulation time is required to be in the micro- or even milliseconds, the total
number of time steps therefore will be in the millions to billions. To maintain a

|

positions and compute forces update positions positions and
velocities and potentials and velocities velocities
init MD simulation cycle output

Figure 1.6: The simplified version of the internal MD Loop.
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reasonable total runtime the execution time required for a single time step needs
to be in the lower millisecond range. Since the number of particles can not be
increased arbitrarily, weak-scaling is not an option and the development of MD has
to focus on strong-scaling. This already imposes challenges in the parallelization
on current petascale hardware.

This work contributes to a software module for the MD simulation toolbox
Gromacs and is embedded in the code development of the SPPEXA [21] project
GROMEX [53]. Gromacs is an open source software developed in Europe. It
has a large user-base of several thousand scientists in academia and research.
Additionally, the project has been included in the folding@home community
extending the compute power to thousands of clients [101]. Such a large and
diverse user-base requires the code to run on a multitude of hardware ranging
from a student’s laptop to the latest supercomputer.

One might ask, what is the most time consuming part of such MD simulations?
Since the integration step is embarrassingly parallel and has no inter-particle de-
pendencies it only takes a tiny portion of the overall runtime. The overwhelming
part of the runtime is consumed by the computation of the long-range interactions.
Since all mutual interactions have to be computed, the naively exhibited compu-
tational complexity is O(N?) with respect to the number of particles N. With the
help of Particle Mesh Ewald (PME) this complexity can be reduced to O(NlogN).
Nevertheless, the significant part of runtime still stems from the long-range in-
teractions. Additionally, PME itself has another drawback. Since it employs a
Fast Fourier Transform (FFT) it has an inherent parallel scaling bottleneck due to
global communication requirements of such FFTs. The contributed software mod-
ule exchanges the PME algorithm with the FMM for the computation of long-range
interactions.

11






THE FMM IN A NUTSHELL

The Fast Multipole Method (FMM) is a numerical method for solving the N-
body problem. The N-body problem is about the computation of all pairwise
interactions between N particles. Those particles might be charges interacting
due to electrostatic forces or masses interacting due to gravitational forces. This
work focuses especially on the computation of the Coulomb potential arising in
molecular dynamics.

Definition 2.1 The Coulomb potential at target position x; for N source particles at
positions x; € R3;i,j € {1,...,N} and the corresponding charges gj is defined as:

N
g; .
D(x;) =) ——— (i+]). (2.1)
= i =,
The corresponding force at target particle at position x; with charge q; is defined as:
N g; —
F(x)=q) ——=(x-x) (@i#)). (2.2)
A -

As seen in Equation 2.1, the computation of a single potential &(x;) has lin-
ear complexity. Since potentials should be evaluated for N particles, the N-body
problem exhibits a computational complexity of O(N?2). This complexity is unfa-
vorable for large simulations since the computation time increases rapidly and
thereby limits the size of the simulation. There are several fast summation schemes
like particle mesh Ewald [31] and Barnes-Hut [12] reducing the complexity to
O(Nlog N) and multigrid methods [112] even exhibiting only linear complexity.

The Fast Multipole Method (FMM) also exhibits linear complexity. It was first
described in 1987 by Greengard and Rokhlin [50]. This work discusses a FMM
specialized for MD focusing only on the Coulomb potential. Nevertheless, many
other FMM implementations exist for the Coulomb or gravitational potential like
ExaFMM [123] or ScalFMM [2]. However, those implementations lack optimiza-
tion and specialization for the constraints introduced by the MD use case like

13
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’ Fast Summation Schemes ‘

il il !

FFT-based ‘ ’ PDE-based ‘ Multipole-based

PME - O(N1logN) Multigrid — O(N) Treecode — O(NlogN)

P3M - O(NlogN) FMM - O(N) &

Figure 2.1: Computational complexity of different fast summation schemes with reduced
complexity.

homogeneous distributed particles and execution time close to a millisecond. Ad-
ditionally, other FMM implementations have been proposed for arbitrary kernels
in a kernel independent way like KIFMM [122].

The main idea of the FMM is the grouping of far distant particles into expansions.
These expansions are used for the computation of pseudo interactions between the
groups instead of the computation of every single interaction between particles of
these groups. The following notation and derivation is adapted from the FMM
proposed in [69].

2.1 PARTICLE GROUPING

To get a better understanding on how the FMM works, the particle distribution
shown in Figure 2.2a is assumed. The particles are positioned in a way, that no
overlapping of the spheres containing the particles can occur. The first group
contains M particles and the second group contains N particles. If the interactions
between particles inside a sphere are ignored, this results in M - N interactions.
As long as the distance between the two groups is big enough, a change of the
particle position in one group does only slightly influence the computed potentials
in the other group. This means, instead of computing all M - N interactions, only
one pseudo interaction between both groups can be computed (see Figure 2.2b).
This pseudo interaction was not introduced yet, but a first approximation could
be to sum up all charges of particles inside the group. This sum can be assigned

\ @ 4 \ /

N 7 N
~_9 ~_Z

(a) M - N interactions (b) one interaction

Figure 2.2: Grouping and interaction of far distant particles for classical direct interaction
via particles and interaction via pseudo-particles (multipoles).
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to a pseudo particle at the center of the group. This interaction would be called a
monopole interaction. Taking higher order expansions like dipoles, quadrupoles,
octopoles or hexapoles into account increases the accuracy. Obviously, this
approach introduces errors since the expansion must be finite. However, there
exists an expansion order that corresponds to the precise (direct) computation of
the system. Since other errors are introduced by the MD simulation it is sufficient
to use a lower precision requirement for the FMM as well. This will speed up the
computation even more.

2.2 MULTIPOLE AND LOCAL EXPANSIONS

For the computation of the forces and the potentials, the FMM utilizes two different
expansions. The first is the multipole expansion and the second is the local
expansion. The derivation can be performed in Cartesian coordinates, however,
using spherical coordinates results in a more compact representation. In order to
derive the spherical expansions additional polynomials are required:

Definition 2.2 The Legendre polynomials with | € N, are defined as:

1 d l
Pl(x)zle!@[(Xz—l)].

Definition 2.3 The associated Legendre polynomials with m € Z are defined as:

Py () = (=1)™(1 — x2) WPI x) (m<l).
Definition 2.4 A complex coefficient wy,, € C of the multipole expansion w of k
particles with position a; = (g;,4;6),j €{1,..., k} inside a sphere with radius a and
center a = (a,«, ) with ag<a and corresponding charges qj is defined as:

k al
_ ) impB
Wiy (@) ;(l+m)!an<cosoc])e J
J:
2 RN 105 2 N

(a) Multipole Expansion (b) Local Expansion

Figure 2.3: Multipole expansion and local expansion with corresponding potential .

15



Chapter 2 The FMM in a Nutshell

Definition 2.5 A complex coefficient Oy, (a) € C of the chargeless multipole ex-
pansion of a point a = (a, «, B) is defined as:

l

a .
mle (cosa) e”™mB

Oy (@) =

Assuming a pointr = (r, 6, ¢) with r > a outside the sphere of the multipole (see
Figure 2.3a), the potential at this point introduced by the particles represented by
the multipole expansion w(a) is given by:

D (r) = Z Z Wim (a) )an (cos 0) eM? . (2.3)

=0 m=-1

The multipole expansion is valid for the computation of the potential for all points
outside the sphere. The convergence with respect to the expansion length of the
potential increases for increasing distance between the sphere and the evaluation
point (r > a).

Definition 2.6 A complex coefficient yy, (r) € C of the local expansion u expanded
atr = (r,0, ¢) with radius 7 and k particles with position ri=(r, 0, ¢),j €11,... ,k}
with r; > T and corresponding charges q; is defined as:

Him (T) = Z G 1 rl+1 le (COS 0: ) img; (2.4)

Definition 2.7 A complex coefficient ;,, (r) € C of the chargeless local expansion
of apointr = (r,0, ¢) is defined as:

—m)!
My, (r) = ule (cos §) eMm? .

Let’s assume another point a = (a,«, f) with a < a inside the sphere (see
Figure 2.3b). The potential at this point introduced by the particles outside the
sphere represented by the local expansion y is given by:

d (P) = Z Z tim (r) )'le (cosa) e~ P . (2.5)

=0m=-1

In contrast to the multipole expansion, this formula is only valid for evaluation
points inside the sphere and the convergence becomes better for points close to
the center of the expansion (a « r). Equation 2.5 and Equation 2.3 show, that the
outer sum extends to infinity. For the computation the series must be truncated
at a finite p € N, called the multipole order. This truncation introduces an error
which can be controlled. There exist error estimation schemes, but as a general
rule of thumb a higher order expansion leads to a smaller error in the computation.
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2,2 N
1] 1,1]2,1
’0,0 1,0 0,0[1,0(2,0 m|
1,1 1,1[2,-1
o 2,-2 ]

Figure 2.4: Triangular structure of a multipole or local expansion for a monopole, a dipole,
a quadrupole and a multipole with multipole order p = 5.

Additionally, it can be observed that, the series uses a double index [, m. For
the truncated formula this leads to a triangular-like structure of the used multi-
pole expansion coefficients (see Figure 2.4). Furthermore, multipole expansions
expanded at the same center can be summed up. In this case, the radius of the
new multipole expansion is the larger of both radii. The same summation rule is
valid for local expansions at the same center. However, for local expansions the
smaller radii is the radius of the new expansion.

2.3 FMM OPERATORS

Until now, only multipole expansions or local expansions at a certain center can
be computed. For the FMM algorithm it is of interest, to compute expansions
directly from other expansions without using particles in every step. Operators
facilitating such possibilities are shown in the following sections.

2.3.1 MULTIPOLE TO MULTIPOLE
Definition 2.8 The coefficients Ajlkm of the multipole to multipole operator are de-
fined as:

Al (b) = Op_jmi () -

The multipole to multipole (M2M) operator can be used to shift a multipole from
one center to another center without expanding particles again. This means, a

Figure 2.5: The multipole to multipole operator allows to shift multipoles around an old
center to a new center.
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Figure 2.6: The local to local operator allows to shift a local expansion around an old
center to a new center inside the sphere.

multipole w(a) expanded at the center a can be shifted to a new center a + b (see
Figure 2.5). The coefficients of the new multipole w(a + b) can be computed as
follows:

1
W (@+b) =" ) wy (@Al (b) . (2.6)
j=0k=—1

This operation does not introduce additional errors itself. The result of applying
the operator is the same as if the particles were expanded directly at the new center.
As seen in Equation 2.6 the computation of a single coefficient of the multipole
expansion w(a + b) exhibits a complexity of O(p?). Since the multipole expansion
has (p + 1)(p + 2)/2 complex coefficients, the complexity for the computation of
all coefficient is O (p*).

2.3.2 LOCAL TO LOCAL
Definition 2.9 The local to local operator C]l,’f is defined as:

Ct(b) = Oj_tk—m () .

The local to local (L2L) operator can be used to shift a local expansion from its
center to another position inside the expansion sphere (see Figure 2.6). This means,
a local expansion yu(r) around the center r can be shifted to a local expansion
u(r —b). The coefficients of the new local expansion can be computed using:

p J
im (r —b) = Z ZC}Z’ (b) pjr (r) . (2.7)

Similar to the M2M operation, the re-expansion of the new local expansion does not
require to use the original particles. In contrast to M2M this operator introduces
additional errors with respect to the expansion length. As seen in Equation 2.7
the computation of the new local expansion has a complexity of O(p*).
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Figure 2.7: The multipole to local operator translates a multipole expansion at a center a
to a local expansion at b — a outside of the sphere of the multipole expansion.

2.3.3 MULTIPOLE TO LOCAL
Definition 2.10 The multipole to local operator B]lkm is given by:

BI" (b) = My, 1jesm (B) .

The multipole to local (M2L) operator can be used to translate a multipole w(a)
into a local expansion y (b — a) (see Figure 2.7). Assuming a multipole expansion
for particles in a sphere around the center a, this multipole represents the impact
of the expanded particles on any point outside the sphere. Using the M2L operator
a local expansion at a point b — a outside the sphere around a can be computed.
This local expansion represents the impact of these particles on points inside the
sphere of the new local expansion. For the radius of the new local expansions it
is required, that the two spheres are disjoint. This translation can be computed
without using the particles as proposed in Equation 2.4. The computation can be
done using the following formula:

o
Hm (b—@) =) Y My jpeim (B) wy (@) . (2.8)
J=0k==j

This operator is the only operator introducing an additional operator error since
the summation of j is limited to p. Nevertheless, this error can be estimated a priori
and controlled [69] within the FMM. Equation 2.8 shows that the application of
this operator exhibits O(p*) complexity. Now, all operators required for an FMM
have been derived.

2.4 FMM ALGORITHMIC FLOW

The computation of forces and potentials using the FMM is split up into far-field
and near-field computations. For p — oo the forces Fzz and potentials ®gr are
exact. The forces Fyr and potentials @y are always exact since no expansions
will be used in the near-field. For the sake of simplicity the error introduced from
numerical round-off errors will be ignored. Since the forces and the potentials are
cumulative they can be written as:

F :FNF +FFF
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Figure 2.8: An example of a quadtree for subdivision depth zero, one, two and three.

R AR A ORI

Figure 2.9: The spatial representation of a quadtree. In the first figure the nodes are
indexed using a two dimensional index. In the second figure the nodes are indexed
with a one dimensional index using a space filling curve. The last figure shows the
corresponding graph representation of the quadtree.

and

2.4.1 FMM SETUP

Spheres are ideal to describe regions of convergence, but unfortunately they are
not well suited to fill space without overlapping. For the algorithm, a space filling
shape without overlap is required. Therefore, the algorithm used in this work,
utilizes cubes. Cubes can be handled easily and are filling space. Other shapes are
possible, but complicate the algorithm and convergence requirements. To keep
things simple, only cubes will be discussed here. In the following, cubes are also
called boxes.

SPATIAL SUBDIVISION USING OCTREE

Since all of the introduced operators require a certain spatial subdivision, the
FMM has to provide this subdivision as a first step of the algorithm. The FMM
uses an octree to divide space. In an octree, every vertex, except the leaf vertices
has 8 child vertices. Even though the algorithm works in 3D using octrees, the
shown examples are for simplicity only in 2D (see Figure 2.8). The creation of the
octree can be setup as follow: It starts with a simulation box which represents the
root vertex (see Figure 2.9). This simulation box is then subdivided recursively
until a certain maximum depth d,,, is reached. This maximum depth must be
defined by the user or in this implementation it is set automatically by the error
and runtime optimizer. Every level in the tree has 8¢ vertices, where d denotes
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Figure 2.10: The particle to multipole (P2M) operation expands the particles at the center
of a box on the lowest level in the tree in a multipole expansion w. The multipole to
multipole (M2M) operation shifts the multipoles from one center of a child box to the
center of the parent. This step is repeated for all child boxes of one parent box. The
expansions are accumulated at the parent box. The multipole to local (M2L) operation
translates multipole expansions to local expansions. Expansions with the same center
can be summed up.

the depth of the subdivision. After the last subdivision, the boxes on the lowest
level, the leaf vertices are reached. The leaves of the tree are the smallest boxes
in the spatial tree each covering 1/8¢ of space.

BINNING PARTICLES

The presented octree has subdivided the simulation space so far. However since
the computed properties stem from particles a radix sort [27] is used to bin the
particles into the boxes on the lowest level.

2.4.2 FAR-FIELD COMPUTATION

For the far-field computation the particles need to be expanded into multipole
expansions. For this, one multipole for each box on the lowest level will be
expanded (see Figure 2.10a) at the center of the box using only particles contained
in the box. As discussed before, the expansion of one particle has the computational
complexity of O(p?) and is done for all N particles, hence this step has O(Np?)
complexity.

After all multipole expansions for all boxes on the lowest level are computed,
the multipoles need to be distributed in the tree at higher levels starting from
d = d.x—1 tod = 0. This is achieved by using the aforementioned M2M operator.
As shown in Figure 2.10b the multipoles are shifted from the center of the box to
the center of the parent box. Since every parent box has eight child boxes, this
results in eight shifted multipole expansions for each parent box. These multipoles
can be accumulated since they share the same center.

After the M2M step, all boxes in the tree own a multipole expansion representing
the particles contained therein. For further computation, the multipoles must
be translated into local expansions using the M2L operator. For this operator it
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@ws=1 (b) ws =2 @ws=3

Figure 2.11: Three examples of the M2L interaction set using different well separation
criteria in 2D.

is necessary, that the surrounding spheres of the multipole expansion and the
local expansion to be generated do not overlap. However, the sphere of direct
box neighbors in the octree overlap. The requirement is satisfied by the well
separation criteria ws and the thereby defined interaction set.

The well separation criteria ws is a FMM parameter usually provided by the
user. The interaction set is defined as follows:

1. Let us consider any box A inside the tree.

2. Only ws-neighbors of A’s parent box are considered in the interaction set of
the box A.

3. All child boxes of these boxes under consideration are added to the interac-
tion set.

4. Afterwards, all ws direct neighbors of A itself are excluded from the interac-
tion set again.

This results in 189 interacting boxes for ws = 1. In general, the maximum number
of boxes in the interaction set depending on ws is given by:

(2 2ws +1))% — 2ws +1)3.

An example of the size of interaction sets can be seen in Figure 2.11.

This means, ws = 1 defines the smallest distance satisfying the non-overlapping
criteria. A large well separation criteria increases the distance between the target
box and the boxes in the interaction set. After the interaction set is defined, the
MZ2L operator (see Figure 2.10c) is applied for each box in the interaction set
and computes a local expansion from all multipole expansions of boxes in the
interaction set at the center of box A.

After the M2L step, local expansions representing the potentials and forces of
particles in the interaction set are scattered within the full tree. To maintain the
linear complexity of the algorithm all local expansions from higher tree levels
need to be shifted to their leaf nodes. This is done using the L2L operator. As seen
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(a) L2L (b) L2P (c) P2P

Figure 2.12: The local to local (L2L) operation shifts the local moments from the center
of the parent box towards the center of all child boxes. The local to particle (L2P)
operation computes the far-field forces influencing the particles in the box. The particle
to particle (P2P) operation computes the near-field interactions using a direct solver.

in Figure 2.12a the operator is used to shift the local expansion from a parent box
to all child boxes. This is done starting at the root node on downwards. Since
every child box has already a local expansion from the M2L step on its respective
level, the shifted local expansion and the local expansion from the M2L step have
to be accumulated. After the lowest level in the octree containing the leaf nodes
is reached, the resulting local expansion represents all particles in the far-field of
this box. These local expansions on the lowest level will be used to compute the
far-field forces and potentials affecting the particles using the L2P operator.

Definition 2.11 The potential g and force Frp for a particle at position @, =
(ax, ax, Bx) in a box with the corresponding local expansion py, (r) can be computed
using the local to particle operator with the following equations:

Ppr (ay) ~ Z Z Him (T) ),sz (cos ) e Pk
=0m=-1

p 1 l
Frp (@) =~ Z Z Ui () V 0+ )|le (cosay)e —impy
=0 m=

As seen in the equations the computation of the force and the potential has a
computational complexity of O(p?). Similar to the P2M step this step is performed
for all N particles resulting in a total complexity of O(Np?) for this step.

2.4.3 NEAR-FIELD COMPUTATION

The near-field forces and potentials have not been taken into account yet. These
are computed from M particles contained in the ws neighboring boxes. The
computation itself is only done with this limited set of particles and Equation 2.1
and Equation 2.2, exhibiting a computational complexity of O(M?). It is done for
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N particles and thus results in a total complexity of O(M?N). Since the number
of particles can be fixed to M for any given system, the total complexity of the
FMM is still O(N).

2.5 FMSOLVR — IMPLEMENTATION SPECIFICS

Fmsolvr [41] is an FMM implementation specialized for MD simulation developed
at the Jiilich Supercomputing Centre (JSC). It is part of the SPPEXA [21] project
GROMEX [53]. Fmsolvr is implemented using modern C++11 and relies heavily on
language and standard library features like vectors or template-meta-programming.
In the following, implementation specifics important for this work are presented.

As a brief summary, the complete algorithm flow is shown in Figure 2.13. In
the Fmsolvr implementation the sequential flow can be described in five distinct
passes.

Pass 1 computes P2M and M2M.

Pass 2 computes all M2L steps on all levels.

Pass 3 includes all L2L operations.

Pass 4 computes the far-field forces and potentials via the L2P operator.
Pass 5 computes the near-field forces and potentials via P2P.

The operators (M2M, M2L and L2L) presented before, exhibit a computational
complexity of O(p*). Using an additional rotation operators, it is possible to reduce
the complexity to O(p3) [117]. Nevertheless, for the parallelization proposed in
this work, it is not important, which kernel implementation is used. This is a
decision done by the algorithm developer and is fully independent from the task
engine proposed in the following chapters.

The most important data structures for the algorithm are the multipole expansion
and the local expansion. As discussed before, these expansions exhibit a triangular
structure. Therefore, the data structure used to store the expansion coefficients
has a triangular structure as well using generic complex floating point types for
the coefficients itself. It can be configured to store the coefficients column or row
major.

Furthermore, the multipole expansion and local expansion have an not yet
discussed symmetry. The part for m > O of the coefficients in the triangular

d
P P2M M2M M2L L2L L2P @ P2P
ws Far Field Near Field

Figure 2.13: The algorithmic flow of the sequential FMM. The parameter d,p and ws are
required to set the accuracy of the algorithm.
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structure can be used to compute the part for m < 0 of the triangular using the
following relation:
Wi —m= (_1)m : wl,m

Hyom = (D™ Ty

This reduces the memory required for the expansions and can be beneficial for
data transfer operations. The implementation can be configured at compile time
to store the complete coefficient triangular or only the upper half. Besides the
expansions, the implementation has custom data structures for particles and their
corresponding charges.
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Shared memory parallelization becomes more and more important in the age of
exascale, single core consumer hardware barely exists anymore. Even today’s
smartphones already feature octa-core processors. To make things worse those pro-
cessors are heterogeneous which means, that the cores have different capabilities
like different clock speeds. For both, smartphone hardware and HPC hardware,
the number of cores per node increases rapidly. By extrapolation, 1000 cores per
node can easily be reached within the next few years. This development poses
new challenges for the software development, especially in HPC.

Available strategies for parallelizing HPC nodes with a moderate number of
cores are not necessarily adaptable for thousands of cores. Additionally, the
increasing number of cores is not the only development impeding the exploitation
of performance on a single node. Things like single instruction, multiple data
(SIMD), heterogeneous cores, caches or hierarchical memory need to be considered
as well. How could an increase of complexity be coped from a software developer
point of view? The concept of abstraction allows to map certain hardware features
to the software layer in a generic manner.

To understand this problem from the viewpoint of a software engineer the
hardware developments need to be distinguished into two different categories.

Qualitative changes in hardware describe the introduction of new features, not
present in one hardware generation, but available in the next, like the multi-
core processors or vectorization (SIMD).

Quantitative changes describe the enhancement of existing features like the
increasing number of cores in a multi-core processor from only a few to
several dozens.

Obviously, it is not possible to foresee qualitative changes and the software cannot
adapt to them automatically. However, to some degree it is possible to account
for quantitative changes. To cope with these challenges, primarily one thing is
required from modern software engineering: software abstractions of hardware
features. With abstractions, quantitative changes are already represented in the
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software and the achieved performance then only depends on the quality of the
implementation.

For HPC applications, especially latency-critical ones, strategies that are capable
to map performance critical hardware features into software abstractions are vital
already today. In this chapter a task engine for HPC is presented. The task engine
design especially focuses on latency-critical applications.

The proposed task engine will be introduced for intra-node usage in this chapter.
Since the tasking approach in general is a relatively new one in HPC the chapter
starts with a discussion of current intra-node parallelization approaches and their
limitations.

3.1 STATE OF THE ART PARALLELIZATION
APPROACHES

Historically, intra-node parallelization was not part of any programming language
like C or Fortran, since supercomputers started out with only one core per node
and hence no necessity to parallelize on the node. Therefore, language extension
or external libraries have been used for the parallelization in the early days of
multicore nodes.

For some HPC application on today’s hardware it might even be sufficient to
solely use inter-node parallelization using the message passing interface (MPI) on
the node. Those HPC applications use multiple MPI processes on a single node.
Since, inter-node parallelization was required on supercomputers anyway, this is a
working solution without additional efforts. Nevertheless, unnecessary additional
overhead is introduced by this approach. The overhead stems from an increased
memory foot print due to usage of additional MPI processes instead of lightweight
threads. Also, data must be explicitly communicated instead of directly accessed
in shared memory by threads resulting in unnecessary duplication of data and
communication overhead. This approach lacks any usage of shared resources and
especially gives up the advantage of using the shared memory.

For only few cores per node, this is not a problem and may be acceptable to
ignore the overhead of additional MPI processes. But for future supercomputers it
will not be possible to gain performance with such an approach anymore.

3.1.1 LOOP-LEVEL PARALLELIZATION

Loop-level parallelism is one of the most common approaches for intra-node
parallelization. The main idea of this approach is to obtain parallelism from
existing loops (e.g. for-loop). The independent loop iterations are split up and
parallelized by assigning subsets of the iterations to different threads.

Without inter-loop data-dependencies or other synchronization requirements
and a sufficient number of iterations, this approach scales efficiently for a single
loop. However, applications usually encompass more then a single loop and exhibit
different inter-loop dependencies. Additionally, due to remaining sequential parts
outside the loops the scaling is limited quickly by Amdahl’s law [5]. Amdahl’s law
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gives an upper bound for the achievable speedup S depending on the sequential
portion ry and parallel portion r,, of the program executed on P cores as

S(P) = ;r (rg+1, = 1). (3.1)
rs+ 3

The limit value of Amdahl’s law shows the upper bound of the speedup depending
on the sequential parts of the program:

) 1
gl_)ngo S(P) = = (3.2)

S

Those sequential regions may stem from different sources:

> Data-dependencies or other synchronization requirements within the algo-
rithm will sequentialize the program.

> Computations outside of parallelized loops will remain sequential.

2 Multiple subsequent parallel loops may utilize thread creation via fork-join
which requires synchronization at the end of the loop and thereby introduces
sequential parts at the synchronization points.

To give an example, let’s assume a program has a sequential portion of 5% the
achievable speedup is limited by 20. On a machine encompassing 40 cores, this
would lead to a maximum parallel efficiency of 50 %. This utilization is completely
insufficient. The limitation in scaling due to the sequential regions might only be
acceptable for low core numbers, but unacceptable for future systems.

Furthermore, loop-level parallelism is limited by the distribution of work. It
might be the case, that not all loop iterations encompass the same amount of
work. This leads to a load imbalance which has to be actively resolved introducing
additional overhead.

The main drawback of loop-level parallelism however stems from the concept
itself. The algorithm developer is forced into an artificial loop-based view of
his algorithm. Of course it makes sense to parallelize existing loops with this
approach. But, it is counter intuitive to introduce new arbitrary loops for the
sole purpose of parallelization. It seems to be much more intuitive to think about
task-based parallelization, which inherently avoids any predefined structure of
parallel execution.

PRAGMAS AND OPENMP

The de-facto standard to exploit loop-level parallelism is OpenMP [28]. OpenMP
is an application program interface (API) for intra-node parallelization. It was first
published in 1997 by the OpenMP architecture review board focusing on loop-level
parallelism. Starting with version 3.0, OpenMP introduced task-based function-
alities. OpenMP natively supports Fortran, C and C++ and implementations are
available for almost all common compilers used on today’s supercomputers.
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OpenMP is based on compiler directives, so called pragmas. Pragmas provide
an easy-to-use syntax for parallelization, especially for languages like Fortran
and C. Those pragmas are being substituted during the compile process by the
OpenMP compiler itself.

Pragmas are language extensions and therefore are not part of the programming
language standardization process. Especially from the view point of modern
C++, these kind of extensions seem to be outdated. C++ offers various zero-
cost abstraction features and parallelization functionality as part of the language
standard. Thus, additional compiler directives are not required to handle intra-
node parallelization.

Additionally, OpenMP lacks sophisticated scheduling for latency-critical appli-
cations which may require the prioritization of a critical path. For example, the
FMM exhibits a parallelism bottleneck in the upper tree levels. With OpenMP it is
not trivially possible to influence the scheduling in such a way that the prioritiza-
tion of the critical path can take place.

Furthermore, it is not possible as a user to influence the program flow inside the
OpenMP library. Since it is not desirable to change the compiler implementation of
OpenMP, it is not possible to change any program specifics that might be required
to enable certain optimizations. In contrast, for a C++ library it would be easier
to exchange components and adapt for different scenarios.

3.1.2 TASK-BASED PARALLELIZATION

Instead of exploiting parallelism solely from loops, task-based parallelization splits
up the entire program flow into several units of work and their dependencies.
These units of work are called tasks and may be executed in parallel. For a task-
based parallelization, dependencies need to be tracked in order to maintain the
correct execution of the tasks.

Due to the increasing number of cores and the limitation of loop-level parallelism,
task-based parallelization becomes an increasingly popular approach in HPC. There
exit several libraries implementing different APIs for task-based parallelization
like Argobots [102], Intel TBB [96], StarPU [9], OpenMP Tasks [10] or Wool [39].
Due to the availability of many different task engines, only the most prominent
ones are discussed shortly.

ARGOBOTS

Argobots [102] is a lightweight task engine written in C. The focus of Argobots
is to offer a lightweight task engine while overcoming scaling bottlenecks due
to blocking function calls like MPI communication. To tackle those blocking
calls, Argobots uses so called user-level-threads (ULT). ULT can yield back to
the scheduler of Argobots during their execution. This is done by copying and
switching the current state of execution. This behavior can also be found in Boost
context library [17]. The scheduler reschedules the partially executed task at a
later point in time. This can be valuable while waiting for a lock, an expensive
I/0 operation or inter-node communication.
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Argobots also offers a basic work-stealing scheduler as well as LIFO, FIFO and
bucket-based priority queues. Furthermore, Argobots provides the concept of
stackable and nested schedulers. This means, users can define their own schedulers
and nest them for more sophisticated scheduling.

Finally, the relation to the MPICH development and the coupling between
MPICH and Argobots should be mentioned. The developer propose an Argobots-
aware MPICH implementation [98], supporting ULTs. This may lower the over-
head of multithreaded communication.

INTEL TBB

Intel thread building blocks (TBB) is a versatile task engine written in C++. It
reflects the effort of Intel providing tools for programming especially highly
scalable processors like Intel Xeon Phi [62] or Intel Xeon Scalable [65] processors.

Intel TBB offers tools to support loop-level parallelism as well as task-based
parallelism. Instead of using compiler directives and pragmas, Intel TBB offers
program interfaces written in modern C++. Intel TBB is based on the threads of
the C++ standard library.

The task engine also encompasses two different data structures for managing
dependencies [61]. The first is a dependency graph implementation and the second
a data-flow graph implementation. For both graphs the user needs to create a
corresponding graph object. Afterwards, the edges and vertices representing the
algorithmic flow need to be defined. The actual dispatching of tasks is done at
runtime.

OPENMP TASKS

OpenMP is an API for shared memory computing. It is available for C, Fortran
and C++ as a compiler extension. Since version 3.0 OpenMP also offers task-based
parallelization features. However, OpenMP is entirely based on compiler directives
called pragmas.

For the implementation of task-based parallelism OpenMP focuses on so called
divide and conquer strategies [91]. The user can define task regions. Inside these
regions it is possible to recursively define other tasks as siblings. All tasks are
created from those regions and handed over to the OpenMP runtime system. The
tasks can be joined using a barrier either inside a task for all sub-tasks or globally.
As long as no dependencies or data synchronizations are required, the execution
order of the task is unknown to the user.

Benchmarks show, that this approach does not scale appropriately [97, 20].

OpenMP extended the tasking with dependency resolving. It allows the user to
define dependencies for a single task. This is also done behind the scene and no
further details are adjustable by the user.

3.1.3 MODELING ALGORITHMIC DEPENDENCIES

For a more fine-grained task-parallel execution of an algorithm, the algorithmic
dependencies need to be modeled. There are two common approaches for this.
The first is the dependency graph which models the algorithm in a backward view.
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Figure 3.1: Graph drawing example of the graph G = (V,E) with V = {a,b,c,d, e} and
E = {(a,b), (a,¢), (b,d), (c,d), (d, e)}.

The second is the data-flow graph modeling the dependencies in a forward view.
Both use the mathematical structure of a graph.

Definition 3.1 A graph is a pair G = (V,E) consisting of a set of vertices V and
edges E.

Edges are ordered or unordered pairs of elements of V. Iff the edges are ordered
pairs, the graph is called directed. Iff the edges are unordered pairs, the graph
is called undirected. A vertex v € V and an edge e € E are incident, iff v € e.
Two vertices are called adjacent, iff they incident a common edge. Two edges are
called incident, iff they are incident with a common vertex.

Definition 3.2 A walk is defined as a sequence of vertices (v, ...,V,) With v; €
V;n € N;n > 1. Vertices v; and v; 1 are adjacent Vi € N;i < (n —1).

Definition 3.3 A closed walk or a cycle is a walk with vy = v,,.

Definition 3.4 An acyclic graph is a graph without cycles. A directed acyclic graph
(DAG) is a directed graph without cycles.

A graph drawing is the geometric representation of a graph (see Figure 3.1). This
representation however is not unique.

DEPENDENCY GRAPH

Unfortunately, there is no uniform definition of a dependency graph in literature.
In this work a DAG is called a dependency graph, if it represents the dependencies
of every piece of data. This means, every vertex represent one and only one piece
of data and every edge represents one and only one manipulation of it.

Insights into the parallelization can be obtained by the structure of such a
dependency graph. There exist several scientific publications showing how to
partition those graphs and distribute the work accordingly. Nevertheless, those
approaches are limited by the complexity of the optimal partitioning being NP-
complete [60]. This might introduce a significant overhead for latency-critical
applications.

For the parallel execution of an algorithm, the dependencies need to be fulfilled
before the next task can be executed. This can be checked using the dependency
graph. The drawback of this approach is, that it requires the setup and traversal
of the complete graph within the program. Even if it is not required to store the
complete graph in memory, this introduces runtime overhead.
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Figure 3.2: An example of a data-flow graph. This data-flow graph denotes the dependen-
cies of the FMM. The nodes represent FMM specific operators. The edges denote the
data-dependency between the operations.

Additionally, it requires to create a significant number of tasks upfront. After-
wards, the task engine needs to iterate over all created tasks and check if their
dependencies are met. This causes a constant polling on the created tasks for
checking the dependencies without computation.

DATA-FLOW GRAPH

In contrast to the dependency graph, the data-flow graph does not model every
single piece of data. The data-flow graph is data-centric and only models pipelines
of data manipulations. In the data-flow graph a vertex denotes an abstract op-
eration in the algorithm, whereas an edge denotes the input and output data of
an operation. It is important to mention, that edges and vertices only represent
abstract data and operations and not a concrete piece of data or operation. The
start node of the graph is used for the algorithms input data. The input data is
used and manipulated by the following operations in the graph until the end of
the graph is reached. The last node in the graph represents the output data of the
algorithm.

Figure 3.2 shows an example of a data-flow graph used for the FMM. All
operations are represented by a single node in the graph and their corresponding
input and output data is denoted on the edges. As seen in this example, the data-
flow graph may contain cycles and is therefore not acyclic.

3.2 TASK ENGINE DESIGN FUNDAMENTALS
In this section the design and implementation of the proposed task engine will be
discussed in detail.

In the following, the components shown in Figure 3.3 are described from the
bottom to the top:

Thread On every physical core of the CPU a thread will be created. This thread
can be created by any available system thread implementation (e.g. pthreads).
Since the task engine is written in C++11 this is almost always an std: : thread.

ThreadingWrapper Since the implementation must be independent from the
actual system threads, the Threadingwrapper is used for encapsulation. It

33



Chapter 3 A C++ Task Engine
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Figure 3.3: An overview of the main infrastructure of the task engine.

maps the interface of the thread to the task engine. This wrapper encom-
passes a constructor for the creation of a new thread as well as a method for
retrieving the unique identifier of a thread. Since this is depending on the
used system threads, the wrapper needs to be specialized correspondingly.

Scheduler The scheduler defines the order of execution of tasks in a single thread.
The scheduler will consist of different components (e.g. the work-stealing
scheduler or the type-driven priority scheduler).

MultiQueue Tasks need to be put in a queue while waiting for being executed.
The multi-queue is an extension of a priority queue. It is used for the type-
driven priority scheduling of tasks along a critical path. The multi-queue
is private to its corresponding thread. However, for the purpose of work-
stealing or work-sharing it can be shared among other threads.

LoadBalancer When tasks are created, a certain thread needs to be selected for
the execution. The load balancer distributes the newly generated tasks
between the existing multi-queues and thereby between the threads. This
load balancer is used by all threads and handles task distribution. Specific
load-balancing strategies must be defined by the user.

TaskFactory The task factory combines all components required for the creation
of new tasks. Every task is able to access the task factory for the creation
of new tasks. Additionally, the task factory contains the static data-flow
dispatcher.

SUSPENDING THREADS

HPC applications may consist of several modules or libraries. Not all parts of a
program may use the proposed task engine for the intra-node parallelization. In
this case, it is necessary to release the used resources (e.g. threads) to make them
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LISTING 3.1:

1 class ThreadDormitory {

2 void trySleep() {

3 if (soft_sleep) {

4 std::unique_lock<std::mutex> unique_lock_guard(mutex);
5 cv.wait(unique_lock _guard, [&]() { return !soft_sleep; });
6 }

7}

8 void putToSleepAll() {

9 std::lock_guard<std::mutex> lock(mutex);

10 soft_sleep = true;

11 }

12 void wakeUpAll() {

13 {

14 std::lock_guard<std::mutex> lock(mutex);

15 soft_sleep = false;

16 }

17 cv.notify_all();

18 }

19 bool soft_sleep = false;

20 std::mutex mutex;

21 std::condition_variable cv;
22 };

available to other parts of the program. Usually this is done by joining the threads
after the computation. If this is done repeatedly, a significant overhead will be
introduced especially for latency-critical applications.

Instead of forking and joining threads over and over again, task engine suspends
the threads. This is done with the help of condition variables. During the actual
suspend, the threads will wait on this condition variable. Since this waiting does
not use busy loops, the resources can be used by other parts of the program in
the meantime. Besides this, suspending introduces less overhead then forking and
joining threads. This capabilities are implemented in the ThreadDormitory.

The implementation of the ThreadDormitory is shown in Listing 3.1. The imple-
mentation only uses a condition variable and mutex lock from the C++ standard
library. The trysleep method is similar to the reference implementation for using
condition variables [26]. The wait method of the condition variable requires a
unique lock which will be released automatically inside the wait method itself.
Additionally, a lambda is used to prevent spurious wake-ups.

Thus the suspend works as follows: At the beginning the soft_sleep flag is
initialized to false. All threads are created and start the execution of available
tasks. After the execution of a task is finished, each thread checks the flag using
the trysleep method. Since the method can be inlined by the compiler there
is no overhead for this function call. When the computation is completed, the
main thread calls the putToSleepAll method. This sets the flag soft_sleep to
true. Whenever a thread calls the trySleep method again, it will be suspended
using the condition variable.

For the start of the next computation phase using the task engine, the main
thread calls the wakeUpAll method. This sets the sleep flag to false and notifies all
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Figure 3.4: The UML activity diagram of the three-phase execution of a processor.

sleeping threads via the condition variable. Afterwards, the threads can be used
by the task engine as before.

3.2.1 ANATOMY OF A TASK

Until now, the task for the task engine are missing. The tasks used in the task
engine consist of two parts. The first is a set of unique identifiers and the second
is a reference to a processor object. The set of unique identifiers is used for
the identification of data objects manipulated by the task. For the FMM these
identifiers refer to boxes in the tree. The processor object is similar to a stateful
function callback and wraps the functionality of a task. The actual execution of a
task is the execution of the processor by applying the identifiers.

THREE-PHASE EXECUTION

For some applications the offloading of data to an accelerator prior the actual
computation of a task or the reducing of data after the computation of a task may
be required. To support this, the execution of a processor is split into three phases
(see Figure 3.4). This three-phase execution consists of a pre-processing method,
a computation method and a post-processing method. All methods share the same
execution context and are executed sequentially, one after another.

SUPPORTING USER-DEFINED PROCESSORS

A processor is the main component of a task and defines its functionality. Since
tasks are usually defined by the user, it must be easy to implement user-defined
processors. This means, the user should not be required to repeatedly implement
the default behavior (e.g. three-phase execution). This could be solved by virtual
inheritance, but this would limit the granularity of the tasks unfavorable.

The processor class is implemented using an abstract processor and the aforemen-
tioned CRTP feature (compile-time inheritance). Parts of the abstract processor
are shown in Listing 3.2.

The abstract processor has one template parameter reflecting the concrete
processor. This template parameter is a so called template-template parameter.
A template-template parameter can be used to apply a template name instead of
a concrete type like std: :vector instead of std: :vector<double> as a template
parameter. In this case, std: :vector is not a concrete type and could not be applied
for a normal template parameter. For the processor this is used to allow additional
template parameters for the concrete processor. To retrieve the processor type,
these template parameters need to be applied as done in the type definition at
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LISTING 3.2:

1 template <template <typename...> class ConcreteProcessor, [...]>

2 struct AbstractProcessor {

3 using Processor = ConcreteProcessor<[...]>;

[...1]

void execute(BoxIDType box_id) {
concrete_processor().pre_processing(box_id);
concrete_processor().run_computation(box_id);
concrete_processor().post_processing(box_id);

}

O 0 N O U b

11

12

13

14 void pre_processing(BoxIDType) {}
15 void run_computation(BoxIDType) {3}
16 void post_processing(BoxIDType) {}
17 [...]

18 Processor & concrete_processor() {

19 return *static_cast<Processor *>(this);
20 }
21 };
LISTING 3.3:
1 template <typename... Args>
2 struct P2MProcessor : public AbstractProcessor<P2MProcessor, Args...> {
3 using P2MProcessor::AbstractProcessor: :AbstractProcessor;
4
5 void run_computation(BoxIDType box_id) {
6 fmsolvr: :passl_P2M(
7 this->fmm_handle_, box_id, this->task_factory_, this->dm_);
8 }
9}
line 3.

The execute method at line 5 defines the three-phase execution of the pro-
cessor by calling the three defined methods. Those three methods are imple-
mented empty from line 14 to line 16. Additionally, the type casting method
called concrete_processor is used. This methods converts the this pointer to
a pointer to the concrete processor. This can be done with a static cast and is
thereby converted at compile-time. All methods, especially the three methods
pre_processing, run_computation and post_processing can be implemented in
the derived class. This will hide the implementation in the abstract class and
ensures, that the implementation of the concrete processor is executed.

Listing 3.3 shows the implementation of the P2M specific processor. Since this
processors does not require any pre- or post-processing, only the run_computation
method is implemented at line 5. Additionally, the abstract processor offers
a constructor which is inherited at line 3. This is the only requirement for
implementing a new processor.
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Figure 3.5: The life-cycle of a task inside the task engine. The scheduler will execute a
task from a multi-queue. After the execution of the task, the corresponding dependency
counters are decremented. If a dependency counter becomes zero, the dispatcher will
be invoked. If the dispatch results in the creation of a new task, the task factory is
employed. The newly created task will be handed over to the load balancer. The load
balancer decides which multi-queue on which thread is used for enqueuing. Afterwards,
the cycle starts over again. This cycle happens in parallel on all threads.

RANGES AND VECTORIZATION

Vectorization becomes more and more important for modern HPC applications.
Enabling vectorization is also a challenge for task engines using fine-grained tasks.
Since the work is split up into very small chunks, those small tasks might not
exhibit enough vectorization capabilities themselves. Also, the data used in a
single task might not necessarily fit the specific vectorization width.

The efforts of vectorization itself go beyond the scope of this work, but the
challenges for the task engine must be addressed. It is required from a task engine
to provide tasks with an adjustable amount of work. To enable this flexibility,
the task engine has to be extended in the following way: The task class described
before handles only a single identifier as a parameter. This parameter must be
exchanged by a set of identifiers. This allows the task engine to adjust the actual
computational size of a task depending on the size of this set. Instead of computing
a task for a single ID, the new task resembles work required for all IDs inside the
new set. Additionally, the task engine must be able to split up those identifier sets
again and fuse two sets to a new set. This enables the task engine to adjust the
amount of work performed by a single task by merging or splitting the identifier
sets.

This feature is used to support vectorization within the task engine. For retriev-
ing the next task from the queue, the user can set the desired amount of work
which should be included in the task. The queue itself may contain tasks with an
arbitrary amount of work. During the retrieving the queue will merge and split
up tasks until the preferred size is reached. With this feature, the user can adjust
the amount of work of the task pulled out of the queue.
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Figure 3.6: An example of the work-stealing scheduler. Four threads are executed in
parallel and executing the task from their local multi-queue. Whenever a scheduler runs
out of local work, tasks can be retrieved from other threads. This is done round-robin.

TASK LIFE-CYCLE

Figure 3.5 shows the components used for the task life-cycle. The TaskFactory
encapsulates all components required for the task creation. With the help of the
factory, every task is capable of creating new tasks. These new tasks are distributed
by the load balancer automatically. Since the load balancer may distribute the
new task to any other thread, the queue must allow multiple producers.

3.2.2 WORK-SHARING AND WORK-STEALING

As mentioned before, the load balancer is used to provide a mechanism for work-
sharing [14]. Using the task factory and the load balancer together, every thread
can create tasks for any other thread. However, for the most cases an optimal load
balancing would be too expensive and thus a small imbalance will always remain.
This imbalance may have two reasons: The first reason is, that tasks encompass
different amount of work. This amount of work is not always known at compile
time and can vary within the program. The second reason originates from the
heterogeneity of the CPUs. Cores with different frequencies or a different set of
features might compute tasks slower or faster.

This fact alone requires a dynamic scheduling at runtime. In the proposed task
engine this is implemented using work-stealing [14] (see Figure 3.6). Whenever
the local queue of a thread is empty and thus the thread runs out of work, the
work-stealing procedure takes over. Round-robin all queues of all other threads
are checked for available tasks. When a non-empty queue has been found, a task
is retrieved and executed from this remote queue.

Nevertheless, work-stealing has a negative effect on data locality [1] namely
cache-misses. But, compared to an idling thread, the runtime impact of a cache
misses due to work-stealing can be neglected. Additionally, load-balancing is still
possible and the user is encouraged to use both: load-balancing and work-stealing.
The user is supposed to improve the load-balancing scheme. This will reduce
the required work-stealing and thereby a trade-off between work-stealing and
work-sharing can be reached.
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3.3 TYPE-DRIVEN PRIORITY SCHEDULING

Latency-critical application often require a sophisticated scheduling to reach
sufficient scaling. This scheduling must take special care of maintaining sufficient
parallelism throughout the program. By scheduling the tasks in the right order
some parallelization bottlenecks like starvation can be avoided.

Let’s come back to the application of interest, the FMM, and its underlying data
structure. Since it is a hierarchical method, it uses a tree-like data structure. Every
vertex in the tree represents an object used for different tasks. This means, every
level encompasses different numbers of vertices and thereby different amounts of
parallelism. The bottleneck for the parallelization are the top levels in the tree
encompassing only a few vertices. But as long as there are enough independent
tasks on the lower tree levels, this bottleneck can be avoided by prioritizing the
tasks on higher tree levels. Once the execution on a higher level does not expose
enough independent parallelism, tasks from the lower levels will be executed
instead. This makes a prioritization scheduler mandatory for the proposed task
engine.

In contrast to most other tasks engines, the proposed framework uses typed
tasks. Task performing operations upwards in the tree have a different type then
tasks working on a specific tree level. This means, the type of the task represents
a corresponding operation in the algorithm. For the scheduling this can be used to
deduce the priority depending on the current operation and is called type-driven
prioritization.

The core of the proposed scheduling is the type-driven priority queue. For the
implementation of this queue two problems had to be solved. First, how to store
diverse types of tasks in the same queue and second, how to prioritize itself.

3.3.1 STORING TASKS OF DIFFERENT TYPES

There are two classical solutions for storing tasks of different types in the same
queue: The first uses function pointers and void pointer arguments and the second
one uses virtual inheritance.

The first is a C-like approach. In this approach, function pointers are used for
tasks. Those function pointers could have arbitrary function parameters. To store
these function pointers in the same data structure, the signature of the function
pointer needs to be equivalent. That is why only a single function parameter
of the type void pointer would be allowed. Thus, the queue would store pairs
consisting of a function pointer and a void pointer. For the execution of a task, the
function would be executed by applying the void pointer as function argument.
Inside the function body, the user must cast the void pointer to the desired type.

This approach has several drawbacks. It involves many type conversions for
the argument and does not preserve type information. Additionally, those error-
prone type conversions are done by the user. Giving up the type safety lowers
the robustness of the code. Bugs from mixed parameters or faultily converted
arguments arise at runtime and are very hard to debug.

The second one is a C++ approach. Instead of void pointers virtual inheritance
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task type A queue of mixed tasks

base- [T T B | B 7 notpossible
task type B

task queue of base tasks
task type C LI T T TTT1] + possible

Figure 3.7: Storing tasks of different types in a single queue is not possible. Therefore
virtual inheritance must be introduced to store the common base pointer.

would be used (see Figure 3.7). For this purpose a common base class is introduced.
All tasks would need to derive from this base class. Each task requires an execute
method using virtual inheritance. To store the tasks in a unique container, a
pointer to the common base task would be used. As long as the execution of a task
holds a significant amount of computation the costs of a virtual function call [34]
can be neglected. Nevertheless, this approach still holds a drawback since virtual
function calls cannot be inlined and thereby elude important optimizations.

In both solutions the type of the task is either completely lost via the void
pointer or hidden by virtual inheritance. In the second approach it is possible to
retrieve the type with dynamic casts, but this process comes with unacceptable
overheads. For some parts of the type-driven priority queue the second approach
will be used.

3.3.2 PRIORITY QUEUES

For the scheduling of tasks along the critical path of any latency-critical algorithm
a priority queue can be used. For the development of a new type-driven prior-
ity queue two classical solutions for the implementation of priority queues are
discussed in the following.

Corresponding to [55, p. 351] priority queues can be subdivided into two
groups. The first group describes bounded range priority queues using a discrete
set of priorities, respectively a small set of priorities. The second group describes
unbounded range priority queues with a very large set of priorities like all values
of an integral type. A priority queue requires the following basic methods:

find-max Retrieve the element with the highest priority from the queue.
delete-max Remove the element with the highest priority from the queue.
insert Insert a new element into the queue.

These methods have different names in literature, but the semantic stays always
the same.

BOUNDED RANGE PRIORITY QUEUES

For applications requiring only a few priorities bounded range priority queues
are sufficient. The restriction of available priorities leads to priority queues with
lower complexities for the three main methods (see Table 3.1). A classical data
structure for these queue is the bucket-based priority queue [33].
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Figure 3.8: An example of a bucket-based priority queue consisting of three priorities.

Method Complexity

find-max O(1)
delete-max O(1)
insert O(1)

Table 3.1: Bucket-based priority queue complexities of the three main methods.

A bucket priority queue consists of several ordered sub-queues (see Figure 3.8).
The order of the sub-queues represents the priorities. The number of sub-queues
and therefore the number of different priorities is denoted with k. Most often the
priorities are represented as integral values:

0<prio< (k—1).

For inserting a new element, the correct sub-queue is retrieved by comparing the
priorities of the new element and the sub-queues. This exhibits a maximum of k
comparisons and since the number of sub-queues is fixed the complexity is O(1).

For the retrieval of the next element the sub-queues are iterated in the order of
priorities. The first non-empty sub-queue is used and the next element is retrieved.
This has the same complexity as the insert method of O(1). Strictly speaking, the
prefactor is exactly the number of empty sub-queues before the first non-empty
sub-queue.

This approach leads to a single-ended priority queue. However, a double-ended
priority queue can be trivially implemented by iterating over the sub-queues in
reverse order.

Most task engines provide priority queues with only a few priorities based on
bucket priority queues (e.g. Argobots [102]).

UNBOUNDED RANGE PRIORITY QUEUES

Unbounded priority queues use a large set of priorities. For the implementation of
those queues min and max heaps are often used. Since min and max heaps work
similar, only max heaps will be discussed in the following.

Before describing max heaps, heap itself needs to be defined. The definition of
a heap differs in the literature. The following definition is used in the remainder
of this work and was adapted from [8].

Definition 3.5 A heap holding n elements is a (binary) tree-based data structure
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(a) Max heap graph diagram (b) Max heap memory layout

Figure 3.9: An example of a max heap graph diagram and the corresponding memory
layout. The memory layout lists the tree levels from top downwards and the elements
per level from left to right.

fulfilling the heap condition. The heap condition requires that all leaves are at most
on two levels.

Heaps with n elements can be stored implicitly in an array of n elements [87].
For this purpose, the elements are listed top down, from left to right. Using this
storage scheme, the root node can be called the first element and the rightmost
element on the lowest level can be called the last element. Figure 3.9a shows an
example of a max heap and the corresponding memory layout.

Definition 3.6 A max heap is a heap with an additional ordering condition. For
every node, the stored value is greater or equal to all of its descendants.

Therefore, the maximum value can be found at the root node. This results in
constant complexity for the find-max method (see Table 3.2). For inserting a
new element, the element is inserted at the leftmost position on the lowest level.
Afterwards it is compared to the value of the parent node. If the ordering condition
is not fulfilled the elements are exchanged until the ordering is fulfilled or the root
node is reached. This implies a maximum of logn comparisons and exchanges,
hence the complexity for inserting is O(logn). For deleting the maximum element
the tree needs to be restructured to fulfill the heap condition again. For this, the
last element is inserted at the root node. Afterwards it is compared to both child
elements. If the ordering condition is not fulfilled it is exchanged with the smallest
element of both. This will be continued until the ordering is fulfilled or a leaf node
is reached. This exhibits logarithmic complexity. With this approach single-ended
priority queues can be implemented.

For the implementation of double-ended priority queues a combination of min
and max heaps is required. One combination is the min-max heap [8]. This
combination of min and max heaps exposes the same complexity for the main
methods (see Table 3.3). This means, it requires O(logn) complexity for insert,
delete-min and delete-max and O(1) complexity for find-min and find-max. To
reach these complexities, an alternating order is used in the tree. The tree is
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Method Complexity

find-max O(1)
delete-max O(logn)
insert O(logn)

Table 3.2: Max heap-based single ended priority queue complexities of the three main

methods.
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(a) Min-Max heap graph diagram (b) Min-Max heap memory layout

Figure 3.10: An example of a min-max heap and the corresponding memory layout.

distinguished into even and odd levels. For even levels the nodes are smaller
or equal to their descendants (min heap) and for odd levels the descendants are
greater or equal to their descendants (max heap). An example of a min-max heap
can be found in Figure 3.10.

3.3.3 TYPE-DRIVEN PRIORITY QUEUE

Since the parallelization of the FMM requires only a few priorities a bounded
range priority queue is sufficient for the development of the type-driven priority
queue. The type-driven priority queue extends the bucket-based priority queue
with the type-driven concept. Since the type-driven priority queue consists of
several sub-queues it will be also called multi-queue in the following. Thereby
the proposed implementation provides a faster insert method while providing
equal performance for the find-max and delete-max methods compared to the
bucket-based priority queue (see Table 3.4). Additionally, since the multi-queues
relies on the type-system of C++ the application is more robust and queue-related

Method Complexity

find-max O(1)
delete-max O(logn)
insert O(logn)

Table 3.3: Min-Max heap-based double ended priority queue complexities of the three
main methods.
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Method Complexity

find-max O(1)
delete-max O(1)
insert O(1)

Table 3.4: Complexities of the type-driven priority queue for the three main methods.
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Figure 3.11: An example of a multi-queue. This multi-queue consists of three typed sub-
queues for P2M, M2M and M2L. All other tasks are stored in the backfill queue using
the common base pointer.

bugs can be quickly detected at compile-time.

MULTI-QUEUE DESIGN

An extension of the bucket-based priority queue used for the multi-queue is the
representation of priorities with type-driven priorities. In the following the design
of the proposed multi-queue is described. The multi-queue itself is only a facade
for the underlying data structure. For the storage of tasks several sub-queues are
used. Those sub-queues are implemented using the double-ended queue from the
standard library (std: :deque).

In the following the structure of the multi-queue is described in more detail.
The multi-queue consists of several sub-queues as shown in Figure 3.11. All sub-
queues store tasks with distinct types except the last sub-queue. Is is a special
backfill queue for all tasks without priority. The priority of the tasks is given by
the order of sub-queues like in bucket-based priority queues. The first sub-queue
has the highest priority, whereas the last sub-queue has the lowest priority. The
backfill sub-queues stores tasks of arbitrary type and uses virtual inheritance to
accomplish that. The design is called herein a hybrid queue storage due to the
mix of “typed” sub-queues and a sub-queue using a common base type also called
backfill queue.

As previously discussed for the execution of the FMM only a few tasks are on the
critical path and need to be prioritized. That is why only a few typed sub-queues
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are required. To avoid overhead due to a large number of unnecessary sub-queues
the backfill queue was introduced. Without the backfill queue a new sub-queue
must be installed for each new task type. Some tasks are created only once in the
simulation and do not require a high priority (e.g. data preparation or sorting).

One distinct feature of this multi-queue is the configurability at compile-time.
At first this sounds like a disadvantage, since such a queue cannot adapt to changes
at runtime. However most algorithms can define their data-flow and priorities
upfront and like in the FMM these priorities will not change during runtime. For
the configuration itself, an ordered list of priorities will be sufficient. If a task
does not need a prioritization it can be neglected from this list. In such a case, the
task will be stored in the backfill queue automatically. This requires all tasks to
inherit from the base task pointer. To avoid the overhead of the virtual function
call a special call syntax is used for the typed sub-queues. This will be explained
in the implementation section.

Additionally, a certain task may require a LIFO or FIFO ordering on the corre-
sponding sub-queue. Since all sub-queues are double-ended this can be achieved
by inserting tasks on the corresponding end of the sub-queue.

3.3.4 ANATOMY OF THE TYPE-DRIVEN PRIORITY QUEUE

In this section the challenges for the implementation of the multi-queue and the
type-driven priority scheduling are discussed. Sticking to the differentiation of
developer roles this is part of the library developers responsibility. Techniques
shown in this section do not need to be understood by algorithm developers
planning to use this library. The library tries to hide such complex implementation
details, offering an easy-to-use interface.

The implementation of the type-driven priority scheduling and the multi-queue
require several features of TMP. Especially, the “type-driven” resolution of pri-
orities in a configurable manner is only possible using TMP. In the following,
challenges arising from the given requirements are shown and their solution is dis-
cussed. An evolution of the multi-queue, from a simple proof of concept, towards
a fully configurable and easy-to-use multi-queue is presented.

COMPOSING TYPED SUB-QUEUES

For a first proof of concept multi-queue the idea of bucket-based priority queues
was used. The simplest implementation for this is the composition of different
typed sub-queues to a single class. Figure 3.12 shows the class diagram of the
simple multi-queue. In this example, FMM tasks are used, but it could be any set
of typed tasks. The tasks required for the FMM are all considered for separate
sub-queues. The find-max method iterates over those sub-queues in the order of
priority until a non-empty sub-queue is found. The same applies for the delete-
max method. For a multithreaded application it is required to find and delete
the maximum value with an “atomic” method. That is why the two methods are
fused to a single find-delete-max method. This method is used to retrieve and
delete the next element in one method and can be implemented thread-safe using
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MultiQueue

- sub_queueO : std::dequeue <P2MTask >
- sub_queuel : std::dequeue <M2MTask >
— sub_queue2 : std::dequeue <M2LTask >
- sub_queue3 : std::dequeue <L2LTask> | sub_que std::de
- sub_queue4 : std::dequeue <L2PTask > 1 1% rdeque
- sub_queue5 : std::dequeue <P2PTask >

+ find-max() : TaskType
+ delete-max() : void
+ insert(task : TaskType) void

Figure 3.12: This is the UML class diagram of the simple MultiQueue consisting of fixed
typed sub-queues only.

LISTING 3.4:

void Insert(Task<M2LProcessor<...>> * m2l_task) const

{

1
2
3 sub_queue2.push_back(m21_task);
4

}

locking mechanism.

The insert method needs to be overloaded for the different task types to insert
the new tasks into the correct sub-queue. Listing 3.4 shows the insert methods
overload for M2L tasks. This simple prototype exhibits several problems for the
use in a library. Due to the hardwired sub-queues together with the overloaded
insert methods a configuration of the priorities is no trivial. For a new task type,
the user would need to implement all required methods by hand. Changing the
priority of a task would also require to change the underlying data-structure as
well as the find-max method. Additionally, rarely executed tasks require separate
sub-queues. This will increase the number of available but unnecessary sub-queues.

Those drawbacks can be eliminated and will be shown step by step in the
following sections.

MAPPING TYPES TO VARIABLES

The most important feature for enabling the configurability of the multi-queue
is the mapping of task types into corresponding sub-queues. A simple multi-
queue uses several sub-queues. For every sub-queue a separate insert method is
required. Also the find-max and delete-max methods must be adjusted if the sub-
queues change. This is not only error-prone but also unacceptable from a usability
standpoint of the algorithm developer. In contrast, the user interface of the multi-
queue only requires a single list of tasks and the corresponding priority. Thus
the coupling between defined priorities and the insert, find-max and delete-max
methods need to be resolved.

For a more flexible implementation the C++11 class std::tuple is used. All
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LISTING 3.5:

1 template <typename sub_queue_t, int cur = 0>

2 static constexpr typename std::enable_if<cur != std::tuple_size<tuple_type>::value, int>::
type

3 TuplePos()

4 {

5 return std::is_same<sub_queue_t, typename std::tuple_element<cur, tuple_type>::type>::

value

6 ? cur

7 : TuplePos<sub_queue_t, cur + 1>();

8 }

9 template <typename sub_queue_t, int cur = 0>

10 static constexpr typename std::enable_if<cur == std::tuple_size<tuple_type>::value, int>::
type

11 TuplePos()

12

13 return cur;

14 3}

sub-queues are stored in a new sub-queue tuple and not in separate variables.
The advantages of this approach is not obvious and needs further explanation.
Instead of using numbered variable names like sub_queue®, sub_queuel the tu-
ple abstracts the index and introduces a template parameter for this. Thus the
sub_queue® becomes the element in the tuple at position zero and so on. Using
this naming scheme, it becomes possible to iterate over elements of the tuple at
compile-time. This makes a mapping between types and variables at compile-time
possible in the first place.

Listing 3.5 shows the implementation of the iteration method. The method
TuplePos() takes a template parameter called sub_queue_t. This is the type of the
searched sub-queue. If the tuple holds a sub-queue of the same type, the position
is returned, else the next position after the end of the tuple is returned. This works
as follows: The method has two template parameters: sub_queue_t and cur. The
non-type template parameter [114, pp. 45] cur has the default value of zero and
reflects the current position of the tuple, starting with zero. The type of the sub-
queue at the current position is compared to the template parameter sub_queue_t
in line 5 using the type trait std: :is_same. The type trait std::is_same compares
two given types for equality and stores the result in the Boolean variable value.
If the types are equal the current position is returned at line line 6. If the types
are not equal the function is called recursively for the next position in the tuple
(see line 7).

Furthermore, the selection of the correct sub-queue depends on the type of the
sub-queue. The type must be known at compile-time. To enable the compile-
time evaluation of the TuplePos method, it is marked as a constant expression
(constexpr). Additionally, the TMP feature SFINAE is used (see Section 1.2) to
test if the end of the tuple is reached. At line line 2 the current position (cur)
needs to be different to the size of the tuple. This function is used in the case that
the current position is in the bounds of the tuple. If the end of the tuple is reached,
the second function starting at line 9 is used. This function returns the size of
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LISTING 3.6:

template <typename task_type>
void push_back(task_type * task)

1
2
3 {

4 auto & queue = std::get<TupleType::TuplePos<task_type>()>(sub_queues_tuple);
5 gueue.push_back(task);

6

the tuple and thereby stops the recursion. In this case, the sub-queue type could
not be found in the tuple and does not exist. This will result in a compile-time
error. From a maintainability point of view such compile-time errors are always
preferred over runtime errors, since they show inconsistency at the earliest point
possible.

With the help of the TuplePos method a generic insert method can be imple-
mented shown in Listing 3.6. This method has a single parameter, a pointer to
the task. The type of the task is reflected by a template parameter and automati-
cally deduced. To retrieve the correct sub-queue corresponding to the task type,
the TuplePos method can be used. The index returned by this method is used at
line 4 to retrieve the correct tuple element. Since the tuple element is a standard
double-ended queue, the task can be inserted as usual.

The enhanced multi-queue now offers the possibility of changing the priorities
at a single line (the tuple definition). The insert method was decoupled and works
generic for all definitions of priorities. A remaining disadvantage might occur
for tasks without priority. In this implementation, every task type needs its own
sub-queue, otherwise a compile-time error is emitted. A solution to this problem
is given in the next section.

THE BACKFILL QUEUE

The backfill queue is used for tasks without priority. Those tasks can even be of
different types and therefore the queue must use virtual inheritance to store such
tasks. For the internal structure of the multi-queue this means, another sub-queue
needs to be introduced. Tasks without priority are stored using the common base
pointer in this backfill queue. In contrast to task in the typed sub-queue, tasks
without priority are not stored with their distinct type in the backfill queue.

If the insert method resolves a valid typed sub-queue the task is inserted directly,
otherwise if the insert method cannot resolve a valid typed sub-queue for the
inserted task type, the task is inserted into the backfill queue automatically. Since
the TuplePos method can be evaluated at compile-time, the same applies for the
decision if a valid sub-queue exists.

The multi-queue is highly configurable and the user of the multi-queue can
change the prioritization easily. Since the multi-queue must be capable of handling
any task without prioritization, the virtual inheritance needs to be intrinsically
available for all task types. This also means, that all tasks are executed using a
virtual function call no matter whether they are from the typed sub-queue or the
backfill queue. Even if the overhead from virtual function calls is negligible in
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LISTING 3.7:

#include <iostream>

1
2
3 struct Base {

4 virtual void foo() {

5 std::cout << "Base class called" << std::endl;

6 }

7 3}

8

9 struct Derived : public Base {

10 virtual void foo() {

11 std::cout << "Derived class called" << std::endl;
12 }

13 3}

14

15 int main() {

16 Derived * d = new Derived();

17

18

19 d->foo();

20 d->Derived: :foo();

21 }

LISTING 3.8:

1 < movq %rax, %rdi

2 < call _ZN7Derived3fooEv
3 -

4 > movq (%rax), %rax

5 > movq (%rax), %rax

6 > movq -24(%rbp), %rdx

7 > movq %rdx, %rdi

8 > call *%rax

most cases, it should be avoided for tasks in typed sub-queues if possible.
REMOVING THE VIRTUAL FUNCTION CALL

The overhead of a virtual function call is negligible as long as the work done
inside the function is significantly larger than the costs of the call itself. Since, the
task granularity is not known and the tasking framework should be as flexible as
possible, overhead due to virtual inheritance should be avoided whenever possible.
Additionally, the inlining capability of the compiler should not be impeded.

To avoid the virtual function call the complete call id can be specified and the
virtual call is thereby suppressed. This means, the method remains virtual, but is
called directly. Listing 3.7 shows a small test program combining both types of
calls. The program was compiled using the GCC C++ compiler (version: 7.2.0)
to x86_64 assembly in two different versions of the program. The first program
uses the usual function call involving a v-table lookup (line 19). The second uses
a direct call at line 20 which is supposed to be without a v-table lookup.

The resulting object dump is compared line by line and the difference is shown
in Listing 3.8. The listing shows, that the version with the direct call removes
the virtual function and calls foo directly, whereas the version with the virtual
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LISTING 3.9:

void ExecuteTask(BaseTask * task) {
task->execute();

3

template <typename TaskType>
void ExecuteTask(TaskType * task) {
task->TaskType: :execute();

3

W N U W N

function call resolves the call to a function pointer from the v-table.

EXECUTING TYPED TASKS WITHOUT A VIRTUAL FUNCTION CALL

To avoid unnecessary virtual function calls, the previous technique is used in the
task engine. The multi-queue provides an execute task method. This method is
used as a wrapper for executing a certain task from any sub-queue. This method
can be specialized for the case, such that the task type is known.

Listing 3.9 shows the ExecuteTask method. The first method (line 1) is the
implementation for task using a common base pointer. This method has a single
function parameter of the type BaseTask pointer. This method calls the execute
function without any further call path specification. The second method (line 5)
uses the previously described call path specification. It uses a template parameter
(TaskType) for the type of the task. This is a concrete task type and can be used
to specify the call path. This removes the virtual function call.

The overload resolution of the actual function call of these two methods may
need further explanation. It is not immediately clear which function is called for
which object. The second method (line 5) is a function template. The function
parameter could be a pointer to any type, including BaseTask. Additionally, as
mentioned before all tasks inherit from BaseTask. This means, that all tasks
could be implicitly converted towards the base class. However, during overload
resolution at compile-time the non-template function is preferred over the function
template [93]. That is why calling the method using a BaseTask pointer results in
a call of the first function. Furthermore, overload resolution prefers candidates
without implicit conversions. Thus the function template is called for concrete
task types.

FIFO AND LIFO SUB-QUEUES

The sub-queues are implemented using the double-ended queue from the standard
library. For this container type, elements can be inserted and extracted at both
ends of the queue. Thereby FIFO or LIFO ordering only depends on the end used
for extracting or inserting. For the implementation in the multi-queue the insert
method is used to distinguish FIFO or LIFO ordering. The next task is always
retrieved from the front.

First, let’s take a look at the insert method (see Listing 3.10). It has one
template parameter called TaskType. The only function parameter is a pointer
to this TaskType. This task is inserted using the push_back method. This method
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LISTING 3.10:

1 template <typename TaskType>

2 void Insert(TaskType * task) const
3 {

4 queues_.push_back(task);

5

}

LISTING 3.11:

template <typename... ProcessorArgs>
void Insert(Task<M2LProcessor<ProcessorArgs...>> * m2l_task) const

1
2
3 {
4
5

}

queues_.push_front(m21l_task);

automatically selects the correct sub-queue and inserts the task at the end of this
queue. Since the retrieve method always extracts the next task from the front, the
default sub-queue has a FIFO ordering.

For selected task types, this can be adjusted to use LIFO ordering. Listing 3.11
shows a template-specialization of the same insert method. The function in this
example is specialized for M2L tasks. Instead of using push_back for inserting the
task, push_front is used. This changes the order of the sub-queue to LIFO.

FINDING THE NEXT TASK TO EXECUTE

For retrieving the next task from the queue, the sub-queues need to be iterated in
the order of priority. After the first non-empty sub-queue has been found, a task
can be returned.

As mentioned before, the sub-queues are all of different types and elements of an
std: :tuple. Iterating over a tuple using a for-loop is not possible. Elements of the
tuple can not be retrieved by using runtime index variables like in a for-loop. The
index of the element accessed must be specified using static, respectively compile-
time index variables. With this in mind, mock-up version would look like nested
if-then-else blocks, checking the sub-queues subsequently. These blocks nest, until
the last sub-queue is checked for non-emptiness. Whenever a sub-queue is not
empty, the task will be returned and the nesting will be exited. Unfortunately,
this solution only works if the number of sub-queues stays constant and the order
of priorities does not change.

For the multi-queue in the task engine the idea of nested if-then-else blocks
was adapted using TMP. Instead of handwriting each nested block, the method
recursively calls itself at compile-time and introduces another if-then-else block
until the end of the tuple is reached. Listing 3.12 shows the implementation of the
ExecuteNextOrdered method. The function has one template parameter cur_pos.
This parameter reflects the current position checked in the tuple starting from
the beginning (position zero). At line 4 the sub-queue at the current position
is checked for emptiness. If the sub-queue comprises a task, this task will be
executed. If the current sub-queue is empty, the current position is increased and
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LISTING 3.12:

1 template <int cur_pos = 0>

2 typename std::enable_if<cur_pos != tuple_wrapper_type::tuple_size, void>::type
3 ExecuteNextOrdered() {

4 if (!tuple_wrapper.template GetQueue<cur_pos>().queue.empty())

5 ExecuteQue(tuple_wrapper.template GetQueue<cur_pos>());

6 else
7 ExecuteNextOrdered<cur_pos + 1>();

8 3}
9 template <int cur_pos = 0>
10 typename std::enable_if<cur_pos == tuple_wrapper_type::tuple_size, void>::type

11 ExecuteNextOrdered() {
12 return;
13 }

the ExecuteNextOrdered method is called recursively. This will result in several
nested function calls, but these calls are small and eventually will be inlined by
the compiler. After inlining, the result is the same as handwritten nested if-then-
else blocks. What happens if the order of priorities needs to be changed? The
order of priorities can be modified by changing the order of sub-queues in the
tuple. This will be adapted by the shown method automatically as the tuple is
iterated from the beginning towards the end.

A remaining question can be: How will the recursion stop? This is similar to the
TuplePos function in Listing 3.5. SFINAE is used to distinguish a current position
representing an existing element of the tuple at line 2 and a position out of bound
at line 10. The latter means, if the current position is equal to the size of the tuple,
no sub-queue remains and the recursion stops.

PARALLEL ACCESS

Up until now, we only discussed a single multi-queue on a single thread using
single consumer and single producer access scheme. For the task engine a multiple
consumer and multiple producer queue is required. Thus the used synchronization
strategy needs further considerations. Currently, the multi-queues can be accessed
with different locks. Using locks instead of lock-free queues is less error-prone
and not performance critical for the considered use case. Nevertheless, since the
underlying data structure can be exchanged it is possible to introduce lock-free
queue implementations from other third-party libraries like [13, 32].

3.3.5 TYPE-DRIVEN PRIORITY SCHEDULER

For the scheduling the type-driven priority scheduler uses one multi-queue per
thread. This multi-queue is assigned to a thread and resembles the thread’s local
multi-queue. Nevertheless, this local multi-queue is not fully private since it can
be accessed by any other thread via the load balancer. Thus it is capable of work-
sharing and work-stealing. The scheduling itself is done by the multi-queue. This
means, the scheduler can simply extract the next task for the execution from the
multi-queue as follows (see Figure 3.13). This scheduling algorithm is used for all
threads. If the main multi-queue of the thread is not empty, the scheduler uses
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(activity Type-driven priority scheduling

Local multi-
t queue empty?

Stealing enabled? }

Execute task from W [No] l [Yes]
local multi-queue J L

[No]
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( Execute task from }
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[ Join or suspend: ) L another multi-queue
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®

Figure 3.13: The UML activity diagram of the type-driven priority scheduler. It shows the
flow of the scheduling activity. The polling-for-work loop is executed by each thread
separately. The prioritization of the task is done internally by the multi-queue and
therefore is not part of the scheduling itself. Whenever the flag join is set, the threads
will join or suspend.
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LISTING 3.13:

1
2 using MultiQueueType = MultiQueue<TaskA, TaskB, TaskC>;
3
4 using MultiQueueType = MultiQueue<TaskC, TaskA, TaskB>;
5
6

using MultiQueueType = MultiQueue<TaskA>;

the find-max and delete-max method to retrieve and delete the next task from
the queue. Afterwards, the task will be executed. If the main multi-queue of the
current thread is empty and work-stealing is enabled, the work-stealing is started.
In this case, the next multi-queue is checked in ascending order on the thread id.
Finally, the scheduler checks the join flag. If the flag is set to true, the threads
join or suspend. Otherwise the scheduling starts again by selecting a new task.

CONFIGURING THE TYPE-DRIVEN PRIORITY SCHEDULER

In this section an overview of the interface of the multi-queue and the type-driven
priority scheduler is given. Corresponding to the categorization of developers
for HPC this is the high level algorithm developers point of view. The usage
of the interface requires to apply template parameters, but does not require the
understanding of the inner working of TMP itself. The goal of the described high
level interface is usability without compromising performance. This was achieved
by a high level of abstraction of the internals of the multi-queue. The underlying
implementation is completely hidden from the user.

Listing 3.13 shows three different example definitions of the multi-queue. Such
a definition is the sole configuration point for prioritization in the type-driven
priority scheduling. The first definition will prioritize the task in the order Taska,
TaskB and Taskc. If the user wants to change this order, only a change of the
keywords is required. This is shown with the second multi-queue definition. In
contrast to the first it will prioritize TaskC with the highest priority. Additionally,
it is possible to omit tasks completely. This is done in the third example. In this
example, only TaskA will be prioritized. All other tasks are internally stored in
the backfill queue.

Thus the list of task types in the definition of the multi-queue defines the priority
of tasks as follows:

1. Only tasks listed in this definition get prioritized.
2. The order of definition defines the priorities.
3. Tasks not listed will be scheduled without priority.

The multi-queue itself features two insert methods: push_front and push_back.
The only parameter of these methods is a pointer to a task of any type. These
methods determine the correct sub-queue for inserting either at the end or the
beginning of the sub-queue. The internal selection of the correct sub-queue is
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done at compile-time without further interaction by the user. If the provided task
does not have a typed sub-queue, the backfill sub-queue is selected as fallback at
compile-time. Therefore the call to these two insert methods directly chooses the
correct sub-queue.

3.4 STATIC DATA-FLOW DISPATCHER

In the previous Section 3.1.3 the data-flow graph was presented. This data-flow
graph can be utilized to model and describe algorithmic dependencies. It consists
of edges representing the data and vertices representing the algorithmic operations
performed on that data. For the data-driven execution of an algorithm, the
corresponding data-flow graph needs to be mapped into the task engine.

This can be done with the static data-flow dispatcher proposed in this section
(see Figure 3.14). The static data-flow dispatcher works as follow: Data-events like
the computation of a multipole can be triggered at the static data-flow dispatcher
by calling the dispatch method. The dispatcher will forward the triggered event
to all event handlers registered for this event. The following sets are used for the
definition of the static data-flow dispatcher:

> A set of data-events (e.g. a multipole) mapping the edges of the data-flow
graph.

> A set of callable event handlers (e.g. M2L task) mapping the vertices of the
data-flow graph.

To register an event handler at the dispatcher, the handler and the event need to
be combined in an event listener.

Definition 3.7 An Event Listener is the combination of a data-event and an arbitrary
number of event handlers.

Therefore the data-flow dispatcher itself is a collection of event listeners.

" trigger
event source ———=o-ffvent] |
. —" " event handler A

1
-
event source g2

o

trigger event 3

 uiggerevents |
event source ~ event handler B

static dataflow dispatcher

Figure 3.14: The schematic view of the static data-flow dispatcher. The left hand side
of the switch board represents the data-events and the right hand side represents the
event handlers. The wiring represent the registered event listeners. When an event
is triggered by an event source, all corresponding event handlers are executed. The
static part of the static data-flow dispatcher is the blue wiring itself. This represents
the dispatch call, which is completely resolved at compile-time.
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LISTING 3.14:

1 enum DataEventSet {
DataEvent1,
DataEvent2,
DataEvent3,

Y

enum EventHandlerSet {
TaskA,

9 TaskB,

10 TaskC,

11 TaskD,

W N U W N

LISTING 3.15:

template <EventHandlerSet EventHandler>
struct CallableImpl {};

template <>
struct CallableImpl<TaskA> {
static void Call(size_t id, TaskFactory task_factory) {

}
I¥

O 0N O U AW N -

Definition 3.8 A Data-Flow Dispatcher is a set of event listeners and a dispatch
method.

3.4.1 ANATOMY OF THE STATIC DATA-FLOW DISPATCHER

In order to understand the components of the high level interface of the static
data-flow dispatcher, some details of the implementation have to be discussed
first. Therefore, the library developer’s view will be explained first and the view
of the algorithm developer is shown afterwards.

The data-flow dispatcher must be configurable at compile-time. To enable
compile-time configuration, the following C++ type definitions model the static
data-flow dispatcher.

The definition of the data-flow dispatcher requires two sets:

> the first set encompasses the data-events and
> the second set encompasses the callable event handlers.

These sets are defined by using enumerations. Listing 3.14 shows an abstract
example using three data-events and four event-handlers. These definitions are
the basis for creating the data-flow dispatcher.

As mentioned in the definition, the event handlers need to be executable. This
functionality is done with a helper class called callableImpl. Listing 3.15 shows
an example of this helper class. The class has a template parameter from the set
of event handlers. To provide the callable feature of an event handler, the class
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LISTING 3.16:

template <DataEventSet RegisteredEvent, EventHandlerSet... EventHandlers>
class EventListener {

}i

using EventListenerl
using EventListener2

EventListener<DataEvent2, TaskC>;

1
2
3
4
5
6
7
8 EventListener<DataEventl, TaskA, TaskB>;

L1STING 3.17:

1 template <typename... EventListeners>
2 class EventListenerContainer {
3

4}

needs to be specialized and a static call method needs to be provided. This is
done at line 4 for the event handler TaskA. With this class, the event handlers
become callable.

Until now, it is only possible to define a set of data-events and a set of callable
event handlers. For the definition of a data-flow dispatcher the composition of
data-events and event handlers into the event listeners is required. Listing 3.16
shows the definition of the event listener type. The class EventListener has two
template parameters. The first is the registered event and the second is an arbitrary
number of event handlers. Listing 3.16 also shows two examples of concrete event
listeners. The first uses the data-event DataEvent2 and the event handler Taskc.
The second example combines the data-event DataEvent1 and the event handler
TaskA and TaskB.

The last feature missing for the static data-flow dispatcher is the possibility to
collect event listeners. This is done using the event listener container shown in
Listing 3.17. The EventListenerContainer uses a variadic template parameter
for arbitrary many event listeners.

THE DISPATCH FLOW

Using the data structures shown before the structure of the static data-flow dis-
patcher can be defined. The only thing missing is the actual dispatch functionality.
This will be introduced now.

The desired dispatch workflow can be seen in Figure 3.15. The EventListener -
Container and the EventListener are extended with a static dispatch method.
The top level dispatch method is the method called by the algorithm developer
and implemented in the EventListenerContainer. This method will iterate over
all registered EventListeners and call their dispatch method. The event listeners
will filter if the triggered event is equal to the registered event. If the events are
the same, the event listener will call the callable helper class for all event handlers.
If the events are not the same, the event listener will immediately return. Since
the data-flow structure is defined as template parameters, the iteration as well as
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(activity EventListenerContainer::dispatch
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Figure 3.15: The flow of the dispatch method of the EventListenerContainer. The
EventListenerContainer iterates over all available EventListener and calls their
dispatch methods. The EventListener calls the event handlers if the events match.
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LISTING 3.18:

template <DataEventSet triggered_event, typename... Args>
static typename std::enable_if<triggered_event == registered_event, void>::type
dispatch(Args &&... args) {

}

W N U W N

template <DataEventSet triggered_event, typename... Args>
static typename std::enable_if<triggered_event != registered_event, void>::type
dispatch(Args &&...) {

e
w N = O O
[

the filtering must be done using compile-time programming.

FILTERING EVENTS

The dispatch process needs to filter the event listeners at some point. This is done
by the event listeners itself. Each event listener will distinguish between two cases.
Either the triggered event and the registered event are the same or not. If this
filtering can be done at compile-time, the resolving of the dispatch method can be
done at compile-time as well.

Listing 3.18 shows the dispatch method of the event listener. The interface
of this method and the template parameters are the same as for the dispatch
method of the EventListenerContainer. The event listener uses SFINAE to filter
the events (at line 2 and line 9). The first implementation of the dispatch method
is valid for the case, that the triggered event is the same as the registered event. In
this cases, the dispatch method will call all event handlers belonging to this event
listener. The second method implementation is valid for the case, that the events
are different. This means, the event listener is not registered for the triggered
event. Thus it results in an empty method. These empty methods will be removed
by the compiler.

3.4.2 STATIC DATA-FLOW DISPATCHER USER INTERFACE

How can the previously defined types and methods be used by the algorithm
developer to configure the static data-flow dispatcher? The user interface sticks to
the formal definition of the static data-flow dispatcher. The user starts by defining
the set of data events and event handlers like in Listing 3.14. After these sets are
defined, the callable methods of the event handlers need to be implemented as
shown in Listing 3.15.

After these definitions of the data events and event handlers, the configuration
of the static data-flow dispatcher can start. Listing 3.19 shows an example of a
static data-flow dispatcher. This dispatcher encompasses three event listeners.
The event listeners represent the data-flow graph excerpts shown in Figure 3.16.

Additionally, the call of the dispatch method for the DataEvent2 is shown. This
dispatch call is completely resolved at compile time. After the substitution of
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LISTING 3.19:

1 using StaticDataFlowDispatcher =

2 EventListenerContainer<EventListener<DataEventl, TaskA>,

3 EventListener<DataEvent2, TaskC, TaskB>,

4 EventListener<DatakEvent3, TaskA, TaskB, TaskD>>;
5
6
7

8

9 StaticDataFlowDispatcher::dispatch<DataEvent2>(var);
10

11

12 CallableImpl<TaskC>::Call(var);

13 CallableImpl<TaskB>::Call(var);

1

( ) TaskA

Q — DataEvent

Figure 3.16: Excerpts from the data-flow graph corresponding to the example of the static
data-flow dispatcher in Listing 3.19.

template parameters and the inlining the resulting calls are shown at the end of
the listing.

THE STATIC PART OF THE DISPATCHER

What is static part in the static data-flow dispatcher? The static refers to the
compile-time resolution of the dispatch method (see Figure 3.14). The “wiring”
between the event and the corresponding event handlers is done at compile-time.
However, this does not restrict the user to call the dispatch method at runtime.
After the compilation the resulting code will not contain the dispatch call anymore,
but instead only the direct call to the corresponding event handlers. This means,
at runtime no expensive resolution of the dispatch method is required anymore.
This lowers the overhead introduced by the dispatcher to a minimum.

3.4.3 DEPENDENCY COUNTER

As the name implies, the static data-flow dispatcher dispatches data-events. These
data-events can either be triggered or not. But some applications might require
to trigger an event several times, before the actual dispatch can be done. In
this section the static data-flow dispatcher is extended with dependency counters
fulfilling this need.

Figure 3.17 shows this extension using an interposed counter. Figure 3.17 (a)
represents the direct triggering of a data-event and Figure 3.17 (b) shows the
delayed event triggering through a dependency counter. As presented in this
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Figure 3.17: Without a dependency counter, the data event can be triggered directly. By
introducing a dependency counter, the trigger is delayed with respect to the counter.

LISTING 3.20:

1 template <DataEventSet event>
2 struct DependencyCounter {
3

std::atomic<std::size_t> counter_;

}i

N O g s

example, all data-events will be extended by a dependency counter. When the
data-flow dispatcher dispatches an event, the dependency counter of this event
will be decremented and only if the counter becomes zero, the actual event is
dispatched.

The data-flow dispatcher should be highly configurable. Therefore it is required,
that the dependency counters are generated automatically from the configuration
of the data-flow dispatcher. Again, this is done with the help of TMP. For every
data-event used in the configuration of the data-flow dispatcher a separate counter
will be created. As an example the automatically generated dependency counters
for the static data-flow dispatcher from Listing 3.19 would encompass counters
for pataEvent1, DataEvent3 and DataEvent2.

The counters itself are encapsulated in a wrapper class called DependencyCounter.
This encapsulation is required to allow user-defined default values. The imple-
mentation of the DependencyCounter class is shown in Listing 3.20. This class uses
atomics from the standard library [68, pp. 1012] by default to allow thread safe
concurrent counting.

Since the counters are generated at compile-time it becomes complicated for
the user to define their default values. But for the most algorithms, it is required
to set algorithm-specific initial values for different data-events. This can be done
with the helper class shown in Listing 3.21. The value provided in this class will
be used as an initial value for the specific data-event dependency counter. To set
a default value for a data-event, this class must be specialized for this data-event.
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LISTING 3.21:

template <DataEventSet event>
struct DependencyCounterDefaults {

const static size_t value = 1;

3

1
2
3
5
template <>

4
6
7
8 struct DependencyCounterDefaults<DataEventl> {
9
10

const static size_t value = 100;

1}

—
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Figure 3.18: If a box counter (BC) becomes zero, the level counter (LC) will be decremented
automatically. If the level counter becomes zero, additionally the tree counter (TC)
will be decremented.

HIERARCHICAL COUNTERS AND DATA EVENTS

Not all applications have such simple dependencies. For hierarchical methods like
tree codes or the FMM it makes sense to extend the concept of data-events and
counters with respect to the surrounding data structure hierarchy. For the FMM
this would mean, a data-event can be triggered for a vertex in the tree, a complete
level in the tree or for the entire tree. For this purpose, a set of hierarchy levels
is defined (e.g. vertex, level, tree) and the event listener is extended to support
these hierarchy levels.

Definition 3.9 A Hierarchical Event Listener is the combination of an event listener
and a hierarchy level.

A hierarchical event listener is only registered for the data-event on the corre-
sponding hierarchy level. An example of this idea for a tree-based structure is
shown in Figure 3.18. This tree has three levels and seven vertices. The set of
hierarchy levels encompasses vertex, level and tree. For each vertex, level and
tree a data-event is defined and a dependency counter will be created. Only the
data-events on the lowest level in the hierarchy can be triggered by the user. In
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[ task creation

(—> task execution ﬁ

dependency
counter

task factory
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Figure 3.19: The flow of the dependency manager. After a task was executed, the cor-
responding dependency counters are decremented. If a dependency counter becomes
zero, the dispatcher will be invoked. The dispatcher will create a new task using the
task factory if necessary.

this example these are data-events on the vertex level. All other data-events (level
data-events and tree data-events) are derived and will be triggered internally.

The hierarchical counter work-flow is as follows: Whenever a vertex counter
becomes zero, a data-event for the vertex is triggered. Additionally, the counter
for the next hierarchy level is notified. For the tree example this would be the level
counter. In this way, the data-event propagates upwards in the hierarchy. When
all data-events of a level have been triggered, the data-event will be triggered
for the level itself. This will also notify the counter for the entire tree. When all
levels triggered the data-event for the level, the data-event for the entire tree will
be triggered automatically.

3.4.4 EVENT HANDLERS

As shown Listing 3.15, an event handler could execute an arbitrary function. This
might suggest the user has to implement algorithmic computation inside the event
handler. This is not true. Algorithmic computation should only be implemented
in tasks itself. Tasks can be load-balanced and dynamically scheduled, event
handlers cannot.

An event handler should only create new tasks and enqueue these tasks. The
desired workflow is shown in Figure 3.19. After the execution of a task, the
dependencies are resolved by decrementing the dependency counter. If the counter
becomes zero, a data-event is triggered at the static data-flow dispatcher. If an
event listener is registered for the triggered data-event, the event handlers will be
executed. The event handler uses the task factory to create a new task and hands
it over to the load balancer. The load balancer then will decide where to schedule
the task and will insert the task into the corresponding multi-queue.

3.5 CONCURRENT DATA ACCESS

Concurrent data access is one of the most important challenges in parallel pro-
gramming. If multiple threads want to manipulate the same piece of data, syn-
chronization must take place. In this section several topics related to the data
access in a task-parallel shared memory program are discussed.
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Figure 3.20: Concurrent access to data using the object wrapper. The left figure shows the
direct access to the data potentially introducing data-races. Using the object wrapper,
the access can be acquired using different strategies. This ensures thread-safe data
access.

The first part is about the library’s capabilities of wrapping the data-access to
handle the actual access in an abstract way. Afterwards, synchronization and
cache coherence will be discussed. An additional section will put the focus on
a special synchronization strategy, namely locks. Finally, the awareness of non-
uniform memory access in the algorithm and the task engine is discussed.

3.5.1 ENCAPSULATION OF DATA ACCESSES

To avoid pitfalls related to data-races the task engine offers capabilities for data
access in a thread safe manner. This is achieved with the so called objectwrapper.
Instead of directly accessing data concurrently the user must acquire the access
using the object wrapper.

For this purpose the object wrapper uses internal object access strategies like
lock-based strategies. These strategies are exchangeable at compile-time. Addi-
tionally, it is possible to provide user-defined strategies.

IMPLEMENTATION

For the object access it is important to enable exchangeable access strategies. With
the object access wrapper it is possible to use other locks or lock-free and wait-free
algorithms. The task engine itself offers a mutex lock and an MCS lock access
strategy. The implementation should be configurable by template parameters
defining the corresponding data type and the desired access strategy.

Listing 3.22 shows parts of the object wrapper implementation. The object wrap-
per has two template parameters: the ObjectType and the ObjectAccessStrategy.
The type of the object wrapped by this class is reflected by the objectType. The
object access provider is determined by the template parameter ObjectAccess-
Strategy. The object access provider is used to acquire the access to the object
using different strategies.

The object wrapper stores a reference to the original object and creates an access
provider for it. The AcquireAccess method grants access to the object using the
defined access strategy. Technically, it calls the acquire method of the access
provider. The access strategy needs to be implemented as a specialization of the
object access provider. This is done for the mutex lock and the MCS lock. Other
strategies would require a specialization written by the user.
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LISTING 3.22:

1 template <typename ObjectType, typename ObjectAccessStrategy>

2 struct ObjectWrapper {

3 using object_access_provider_type =

4 ObjectAccessProvider<ObjectType, ObjectAccessStrategy>;

5 using object_access_type =

6 typename object_access_provider_type::object_access_type;
7

8

9

const object_access_type acquire_access(const ThreadIdentifier & thread_id) {
return oap_.acquire(thread_id.ID(), obj_);
10 }
11
12 private:
13 ObjectType & obj_;
14 object_access_provider_type oap_;
15 };

LISTING 3.23:

1 template <typename ObjectType>
2 struct ObjectAccessProvider<ObjectType, MutexLockStrategy> {
3 using oa_t = ObjectAccess<object_type, MutexLockStrategy>;

4
5 const oa_t acquire(const user_id_type, ObjectType & obj) {
6 mutex_.lock();

7 return oa_t(obj, *this);
8 }
9

10 void release() {

11 mutex_.unlock();

12 }

13

14 private:

15 std::mutex mutex_;

16 };

Listing 3.23 shows a simple example of an object access provider using a mutex
lock for the synchronization. Whenever a thread wants to acquire access to this
object the acquire method will be called. In this example the mutex will be locked
and the objectAccess is returned. The object access itself is mainly used to release
the lock in the destructor and is explained next.

Listing 3.24 shows the implementation of ObjectAccess class. It is similar to
a pair with a reference to the acquired object and the used access provider. In
the destructor of the object access, the release method of the access provider is
called. This leads to an exception safe implementation of the acquired resources.
Whenever another exception occurs, the destructor will be called and the lock
will be released.

3.5.2 CACHE COHERENCY

CPUs use private caches and therefore need to guarantee the consistency of these
caches. Whenever data resides in one cache and is manipulated in another cache,
the consistency of the data needs to be maintained at all times. This is done
utilizing cache coherence protocols. Usually, those protocols work on junks of
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LISTING 3.24:

1 template <typename ObjectType>

2 class ObjectAccess<ObjectType, MutexLockStrategy> {
3 public:

4 ObjectAccess(ObjectType & o,

5 ObjectAccessProvider<ObjectType, MutexLockStrategy> & oap)
6 : obj_(o), oap(oap){};

7

8 ~0ObjectAccess() {

9 oap.release();

10 }

12 ObjectType & 0bj() const {

13 return obj_;
14 3

15

16 private:

17 ObjectType & obj_;
18 ObjectAccessProvider<ObjectType, MutexLockStrategy> & oap;
19 };

data (cache lines) instead of single data elements. For the Intel Xeon SP processors
such a cache line contains 64 bytes.

A well known cache coherence protocol is the MESI protocol, also known as
the Illinois protocol [94]. Figure 3.21 shows the algorithmic flow of the MESI
protocol, adopted from [94, p. 350]. This protocol uses the following states for
every cache line:

Exclusive-Modified (M) This cache line is owned exclusive and has been mod-
ified, hence it is not consistent with main memory. A write back to the
memory is required.

Exclusive-Unmodified (E) This cache line is owned exclusively and is unmodi-
fied. It is consistent to the data in main memory.

Shared-Unmodified (S) This cache line is shared and hence not available exclu-
sively by one core. It is unmodified and hence consistent with the main
memory.

Invalid (I) This cache line is invalid.

Even if current CPUs might not use the original MESI protocol, cache coherence
is required for concurrent data access. This means, writes require an invalidation
of all other caches if the data was in a shared state.

This means, besides the usual cache misses triggered by the application cache
invalidations due to the cache coherence protocol will occur. Especially for global
variables involving many read and write operations from concurrent threads this
may cause a performance bottleneck. While read access only requires a shared
cache line, write operations always need exclusive access before writing. A typical
scenario for global variables requiring write access are global counters and locks
based on read-modify-write operations.
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Figure 3.21: The activity diagram for maintaining the cache coherence for a write operation
using the MESI protocol adapted from [94, p. 350]
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For compute nodes with multiple sockets this problem gets even worse. Here
the cache coherence protocol cannot use the last level cache but must use a
slower bus connection between the sockets to restore coherency. Therefore,
cache invalidations crossing NUMA borders become even more expensive. This
means, for locks cache coherence friendly concepts are required. Such schemes
are discussed in the following sections.

3.5.3 LOCKS

Locks are a basic tool for thread safe data-access in concurrent programs. Locks
ensure, that the execution of a critical section by one thread does not overlap with
the execution of the same critical section by another thread. Referring to [55,
p. 24] this is called the mutual exclusion property.

Many lock implementations use busy waiting for the exclusion of threads. This
may cause unnecessary contention either on the last level cache or the bus between
different NUMA nodes. In the following some locks are presented and discussed
with respect to performance.

MUTEX LOCKS

A mutex lock is the default lock in the pthreads library [89] and available in the
threads support library of C++11. The initial state of a mutex lock is unlocked.
A thread acquiring the lock calls the lock method and will succeed, if no other
thread has acquired the lock. If the lock is already locked, the mutex uses a so
called wait queue. The acquiring thread will be added to the wait queue and
suspended until the lock is released. For short lock contentions this suspension
mechanism introduces overhead. Additionally, this lock relies heavily on system
calls for the synchronization. This can be avoided by using the fast user level
locking API of Linux (Futex) [44]. The mutex locks in the pthreads library as
well as the mutex in the standard library use futexes. Nevertheless, in the case of
contention, expensive system calls for the thread suspension are required.

SPIN LOCKS

Spinlocks are basic locks for shared memory programming. A spinlock encompasses
a single Boolean compare-and-swap (CAS)-register for its synchronization. In
C++ a Boolean CAS-register is implemented as an atomic flag, which is a Boolean
variable providing a CAS method.

The Boolean variable shows whether the lock is in a locked state or not. The
initial state is unlocked and thus the Boolean flag is set to false. Whenever a
thread wants to acquire the lock, it repeatedly executes CAS on the atomic flag
until it succeeds. Iff the variable is false, CAS sets it to true in an atomic operation.
This condition is tested in a loop until the CAS operation was successful This is
also called busy waiting.

In contrast to mutex locks, this does not require any expensive system calls. For
locks with short contention time this may be an advantage in performance. A
disadvantage is the single global Boolean variable required for the synchronization.
Since the CAS instruction is a write operation, the cache needs to be exclusive.
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GlobalLock LocalLock
— tail : LocalLock tail + next: LocalLock
X 1| + lock state : bool
+ lock() : void 1
+ unlock() : void next

Figure 3.22: The UML class diagram of the global lock and local lock classes used for the
MCS lock.

tail tail tail tail
null false false ¥ true — true false false — true
A A B C A B C

Figure 3.23: An example of an MCS-Lock adapted from [55, p. 154]. In the leftmost
figure, the initial MCS-lock is shown. The second figure shows the state, after thread A
acquired the lock. In the next figure, thread B and C want to acquire the lock as well.
Therefore, the next pointer of the previous local lock is set to the own local lock and
the own local lock state is set to true. The rightmost figure shows the state after thread
A released the lock. In this figure, thread B holds the lock and thread C is still waiting.

This causes frequent cache invalidations. Especially, for multiple NUMA-nodes
this causes overhead due to traffic on the bus connection.

SCALABLE LOCKS — MCS LOCKS

The MCS lock [78] is a so called scalable lock. It performs well even under high
contention.

The MCS lock is designed as a FIFO lock, ensuring a kind of fairness for contend-
ing threads. The MCS lock is cache local and therefore cache coherence friendly
due to local spinning instead of global spinning. However, the memory require-
ment is not constant, but scales with the number of threads.

Similar to Lamport’s Bakery lock [74], the MCS lock uses a queue for maintaining
threads trying to acquire the lock. The MCS lock consists of global lock and local
lock objects (see Figure 3.22). The global part of the MCS lock consists of a pointer
to the tail of a linked list representing the queue. The queue itself consists of local
locks. Those local locks encompass a pointer to the next element in the queue and
a Boolean variable representing the lock state. Initially, every thread using the
MCS lock has its own local lock object initialized with a null pointer and a lock
state set to false.

If the global lock’s tail pointer is a null pointer, the lock is unlocked. The lock
method uses an atomic fetch and store operation to set the global lock tail pointer
to a pointer to its own local lock and fetches the predecessor. If the predecessor is
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non-existent, the lock was unlocked and is locked by the thread. If a predecessor
exists, another thread already holds the lock. The acquiring thread sets it own
Boolean flag to true. Afterwards the acquiring thread sets the next pointer of the
predecessor to its own local lock. Finally, the acquiring thread starts waiting on
the local Boolean variable until the predecessor unlocks the lock.

The unlocking works as follows: The releasing thread checks the pointer of
its own local lock to the next local lock. If this pointer is a null pointer, the
releasing thread uses a compare and set operation on the global lock’s tail pointer.
It compares the tail pointer to the pointer of its own local lock and sets it to a
null pointer. If this operation was successful, no other thread currently wants to
acquire the lock and the lock is unlocked. If the compare and set fails, another
thread is acquiring the lock and the releasing thread waits until the local next
pointer was set by the acquiring thread.

If the next pointer of the local lock is not a null pointer anymore, the releasing
thread sets the Boolean variable of the next local lock to false. This will release
the lock and the next thread can acquire it. Additionally, the next pointer of the
local lock of the releasing lock will be set to a null pointer.

Compared to a spin lock, all busy waiting is only done on local variables. The
cache of another core is only modified once when the lock is released. This means,
instead of multiple cache coherency invalidations only a single one is required.

3.5.4 SUPPORTING NUMA

Up until now, only uniform memory access (UMA) hardware was considered.
However, already today’s hardware exhibits non-uniform memory access (NUMA).
Due to NUMA, accessing data residing on remote NUMA nodes is significantly
more expensive [83]. This needs to be considered for the task engine. In the task
engine, the crossing of NUMA borders can happen during the work-stealing or the
work-sharing.

A master thesis using the proposed task engine, investigating the effects of
NUMA has been conducted by L. Morgenstern [85]. This work proposes NUMA
aware strategies for work-stealing, load balancing and allocations of algorithmic
data. It shows, that NUMA awareness is necessary, especially for latency-critical
applications. Parts of the performance analysis of this thesis are shown in Sec-
tion 3.7.4.

3.6 USE CASE: FMM PARALLELIZATION

In Chapter 2 the algorithmic details of the FMM were presented. In this section
this knowledge will be used to develop different parallelization strategies.

From the sequential flow of the algorithm likely synchronization points within
the parallelization execution can be deduced. With this in mind, a first loop-level
only parallelization can be formulated. This version would exhibit very coarse-
grained synchronizations between the FMM passes.

To resolve those coarse-grained synchronizations the algorithmic dependencies
will be analyzed in more detail resulting in the data-flow graph. This graph will
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Figure 3.24: The sequential flow of the FMM subdivided in passes.
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Figure 3.25: The loop-level parallel FMM using the loops of the passes for the paralleliza-
tion. After each loop, an implicit synchronization is required.

be used for the data-flow parallelization which is the defined goal for the task
engine design and implementation. It exhibits sufficient parallelism and promises
the most scalability.

SEQUENTIAL ALGORITHMIC FLOW

Figure 3.24 show the typical subdivision of the FMM into five different passes.
Four passes are part of the far-field computations and one pass denotes the near-
field computation. Before any pass can start, the space must be subdivided using
an octree. Afterwards, the particles are binned into the boxes on the lowest level
of the octree.

After those preliminary steps, the algorithmic flow starting with the far-field
proceeds as follows: In Pass 1 the particles are expanded into multipoles (P2M)
and shifted and accumulated upwards in the tree (M2M). Pass 2 consists of the
translation of multipole expansions to local expansions (M2L). Pass 3 encompasses
the shift and accumulate operations downwards in the tree (L2L). Pass 4 is the
last pass in the far-field computation and comprises of the computation of the
far-field forces affecting the particles (L2P). The computation concludes with Pass
5, the computation of the near-field forces (P2P).

Deduced from this algorithmic flow, a trivial parallelization could be imple-
mented using the passes as synchronization points.

3.6.1 CLASSICAL LOOP-BASED DESIGN

Every pass in the sequential FMM encompasses loops iterating horizontally or ver-
tically in the tree. These loops can be parallelized using loop-level parallelization.
Figure 3.25 shows the flow of a loop-level parallelized FMM. This approach is
easy to implement and can be beneficial for nodes with only a few cores.
However, this approach does not strong-scale on nodes with a high number of
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Figure 3.26: The FMM operators exhibit different amounts of parallelism. Operators like
M2M and L2L have inter-operational dependencies and are limited in parallelism on
higher tree levels. Operators working on one tree level do not suffer from this limitation
and exhibit a higher level of parallelism.

cores with only a few particles per core. The limitations for the scaling are the
following: Due to the parallelization over loops sequential regions outside the
loop will remain. Additionally, the loop-level approach introduces unnecessary
synchronizations. After each parallel loop, an implicit barrier causes the synchro-
nization of all threads. This contributes to the overall sequential portion of the
program. Corresponding to Amdahl’s law [5] this will limit the speedup.

Another complication arises from the different amounts of work inside the dif-
ferent loops (see Figure 3.26). Operators without inter-operational dependencies
like P2M, M2L, L2P and P2P are inherently independent and can be executed con-
currently. All loop iterations are independent of each other and can therefore be
executed in parallel as well. Operators like M2M and L2L have inter-operational
dependencies. As an example, M2M shifts multipole expansions upwards in the
tree. Hence, the most outer loop iterates over the tree levels starting at the lowest
level. Before the upper level can be reached, the multipoles on the lower levels
need to be shifted upwards. This reduces the parallelism from level to level up
to a single box at the root node. This is the critical path for the parallelization,
due to the lower parallelism on the higher tree levels. The runtime impact of
these operations on the higher level might be small, but Amdahl’s law will show
degradation in the scaling if the number of cores becomes larger. This is an un-
necessary bottleneck, which can be avoided by considering the critical path of the
FMM for scheduling decisions and remove arbitrary synchronization points of the
loop-level approach.

3.6.2 EVOLUTION OF A DATA-CENTRIC VIEW

The trivial parallelization based on the sequential view is incoherently limited in
scaling for the desired problems. To overcome disadvantages of the loop level
parallelization the data-dependencies of the FMM need to be analyzed in more
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Figure 3.27: The data-flow graph of the FMM operators. The nodes represent the afore-
mentioned operations. The edges denote the data-dependency between the operations.

detail. For the data-flow graph, the FMM specific operators and their input and
output data must be analyzed. The data used in the FMM can be categorized as
follows:

> particle coordinates and their charges,
> multipole expansions w and local expansions y and
> forces and potentials.

Figure 3.27 shows a simplified data-flow graph of the FMM. The boxes in this
graph represent the operators, whereas the edges denote the in- and output data
and therefore the dependencies. For simplicity, the spatial subdivision and the
binning of particles into boxes is omitted in the shown graph.

The last work item in the algorithm is the computation of the forces. This step
is finished, when both, the near-filed and the far-field forces are computed.

A loop-level parallel FMM would require synchronization points between the
passes. This lowers the exhibited parallelism. With a parallelization utilizing
the data-flow graph, these bulk synchronizations can be resolved and exchanged
against several smaller individual synchronizations. In contrast to the synchro-
nizations after the parallel loops, not all threads need to synchronize at those
points. This will exhibit more independent parallelism at a fine-grained level,
which makes increased concurrency possible.

3.6.3 DATA-DRIVEN TASK PARALLEL FMM

The data-flow graph of the FMM is the basis of the data-driven task parallel FMM
implementation. The data-flow graph is implemented using the static data-flow
dispatcher described in Section 3.4. For the configuration of the dispatcher, the
definition of tasks, data events and dependency counters are required.

The dependency counters are used to determine the state of the computation.
They are used to decide whether the data is ready for further computation.
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Figure 3.28: The M2L task can be source centric or target centric. In the source centric
case, one multipole expansion w is used for 189 M2L operations. In the target centric
case, one local expansion y will be computed using 189 M2L operations.

FMM DATA-EVENTS

The data-events for the FMM are determined by the data-flow graph. The input
data (coordinates and charges) is not reflected as a data-event. It is expected, that
this data is fully available at the beginning of the simulation. Nevertheless, if this
is not the case it is possible to introduce a data-event for the input data as well.

For the multipole and local expansions different events are defined. The first
event is called OMEGA and triggered, when a multipole expansion was computed.
This is the case after a P2M operation for a box or eight M2M operations have
been executed. The next event is called Mu. This event is triggered whenever a
local expansion is computed. This requires all 189 M2L operations and one L2L
operation from the parent level to be finished. Finally, there is an event called
MU_Lowest which is used for identifying local expansions on the lowest tree level.
After the local expansion on the lowest level is computed, the subsequent L2P
tasks are be created and enqueued.

TASKS GRANULARITY

For the tasks an identifier is required. This is the box the operator will be applied
on. Instead of creating several tasks of the same type for different indices, this
can be done with a set of indices. This set of indices is iterated inside the task and
the task function will be executed for each index. For simplicity the following
description uses only one index instead of a set. Every FMM specific operator is
implemented using a custom task type.

The tasks are defined as follows: The P2M task encompasses the expansion of all
particles inside the box under consideration. After a single P2M task is executed,
the multipole expansion for the indexed box is ready for further computation.
The box index of an M2M task selects the parent box for the operation. The task
consists of all eight M2M operations required for the computation of the multipole
expansion in this box. It shifts all eight child box multipole expansions upwards.

The M2L operation can be modeled in two ways, either target centric or source
centric (see Figure 3.28). For the computation of a local expansion (ws = 1)
exactly 189 M2L operations are required. Due to the symmetry of the algorithm a
multipole expansion is used in exactly 189 M2L operations as source. The number
of M2L operations depends on the well separation criteria. This means, if one
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multipole is used for all M2L interactions, the task is called source centric. If a
task encompasses all M2L operations required for the computation of one target
U, it is called target centric.

For the L2L task the parent box index is used for distinction. The task consists
of all downwards operations from this box to its eight child boxes. The L2P task is
similar to the P2M task and encompasses all particles belonging to the box under
consideration. The P2P task includes the computation in the near-field required
for particles belonging to the box.

3.7 PERFORMANCE EVALUATION

In this section the performance of the proposed task engine using the data-driven
FMM will be discussed. Referring to [109] the performance of the task engine
will be analyzed in three different categories:

¥ Overhead-time
¥ Work-time
> Idle-time

The presented measurements are repeated sufficiently often to guarantee consistent
results and 75 %-quartiles are plotted [58].

PARTICLE SYSTEMS

The shown performance evaluations are conducted using the task engine for the
FMM implementation. For all measurements the well separation criteria is set to
ws = 1. The multipole order p is used to adjust the accuracy of the computation.
A low multipole order reflects a low accuracy and leads to less computation, this
moves the benchmark into the latency-critical regime. Low accuracy can be used
to reveal additional but minor parallelization overheads.

The following two particle systems are used for the analysis: The first system is
the small particle system. This system was generated randomly and encompasses
1000 homogeneously distributed charged particles. The system is used with a
tree depth d = 3. This leads to 512 boxes on the lowest level encompassing two
particles per box in average.

The second particle system is the large particle system. This system consists of
103 680 homogeneously distributed charged particles from a silica melt [7]. The
tree depth for this example is set to d = 4.

HARDWARE SPECIFICATION

The following analysis has been conducted on a compute node equipped with two
Intel Xeon Platinum 8170 processors [63] encompassing 26 cores each. In the
following this node will be called the Skylake node. Important characteristics of
this system are summarized in Table 3.5. The system has two NUMA nodes and is
equipped with 196 GiB of main memory.
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System specifics Caches
Cores 26 L1d 32KiB
Sockets/NUMA 2 L1i 32KiB
Total cores 52 L2 1024KiB
SMT 2 L3 36608KiB

Table 3.5: Important hardware characteristics of the used compute node equipped with
two Intel Xeon Platinum 8170 CPUs and a total of 196 GiB main memory.

Additionally, some measurements have been conducted on a compute node of
the supercomputer called JURECA [73]. These nodes are equipped with two Intel
Xeon E5-2680 v3 processors [64] encompassing 12 cores each.

3.7.1 OVERHEAD-TIME ANALYSIS

The measurement shown in Figure 3.29 was performed to reveal overheads intro-
duced by the task engine. This analysis was done on the Skylake node using the
small particle system and a multipole order p = 0. For 52 cores, the number of
particles per core is less than 20. In the plots, the runtime and the parallel effi-
ciency are shown. The low order of poles leads to tiny tasks encompassing only a
single complex multiplication for each FMM operators M2M, M2L or L2L. It is not
expected to achieve a high parallel efficiency for this corner case. In a real world
example, the workload would be significantly larger. The plot still shows, with
an increasing thread count, a decrease of runtime to 1.4 ms. Even with almost no
computation at all, a parallel efficiency over 40 % has been achieved for 26 cores.

3.7.2 WORK-TIME ANALYSIS

The analysis shown in Figure 3.30 focuses on the work-time per M2L step. There-
fore, the numbers of M2L operations per second were measured depending on the
number of threads used. This analysis was done on a node of JURECA using the
large particle system and a multipole order p = 10.

For the analysis of the parallel execution overhead, the inflation of the work-
time is interesting. Such an inflation could be due to different reasons, for example
cache effects. The plot presented in Figure 3.30 reveals a much higher rate for one
and two threads compared to 24 threads. However, this drop in performance can
be explained fully by the dynamic frequency scheduling support of the processor,
like Intel Turbo Boost [23] and does not hint towards scalability issues. Turbo
boost allows the processor frequency to vary, depending on the overall workload
(see Figure 3.31). With Turbo Boost enabled, no reliable measurements of the
parallel efficiency are possible, since the base line version with only a single active
thread might have been exposed to a faster CPU clock speed.

3.7.3 IDLE-TIME ANALYSIS
The benchmark shown in Figure 3.32 is used for analysing the idle-time of the
FMM using the task engine. This analysis was done on a node of JURECA using
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Figure 3.29: This benchmark uses the small particle system and a multipole order of zero.
It was conducted on the Skylake node. These parameters reflect a very low accuracy
resulting in almost no computation at all.
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Figure 3.30: Work-time inflation for the M2L operator. Showing the number of operations
per second depending on the number of threads. This benchmark uses the large particle
system and p = 10. It was conducted on a single node of JURECA.
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Figure 3.31: Intel Turbo Boost frequency bins for Intel Xeon E5-2680 v3 depending on
the number of utilized cores.
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Figure 3.32: Plots showing the number of concurrently active threads for a simulation
run with 24 threads. This benchmark uses the large particle system and p = 10. It was
conducted on a node of JURECA encompassing 24 cores.
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Figure 3.33: Comparison of the best NUMA-strategy and default implementation from [85].
This benchmark uses the small particle system and a multipole order of three. It was
conducted on a node of JURECA encompassing 24 cores in two NUMA-nodes.

the large particle system and a multipole order p = 10. This benchmark was
executed by 24 threads. During the computation, at every millisecond, the active
threads were counted. Here, active thread means, that any thread computing
a task and currently not being in the scheduling process counts as active. The
benchmark with work-stealing disabled shows a drop of parallel active threads
towards the end. This drop is due to the parallelization bottleneck and subsequent
synchronizations in the upper tree levels. Some threads run out of work, while
other threads are still shifting multipoles upwards in the tree. Only after the first
L2L tasks can be created, every thread is actively participating again. As expected,
this can be circumvented by dynamic scheduling using work-stealing.

3.7.4 NUMA-AWARENESS ANALYSIS

Figure 3.33 shows the results of the NUMA-awareness extension described in more
detail in the master thesis by L. Morgenstern [85]. This analysis was done on a
node of JURECA using the small particle system and a multipole order p = 3. The
employed FMM settings reflect a very low accuracy. This setting was chosen to
introduce a higher runtime impact due to NUMA effects. In the plot, the baseline
implementation without NUMA awareness is compared to the best NUMA strategy
implemented. As shown, the NUMA aware implementation constantly outperforms
the baseline implementation. This shows, NUMA already poses a performance
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Figure 3.34: Comparison of mutex lock, a non-shared mutex lock and the MCS lock. This
benchmark uses the small particle system and a multipole order of one. It was conducted
on the Skylake node.

drawback and can be effectively handled with NUMA aware allocations, work-
stealing and load balancing.

3.7.5 LOCK COMPARISONS

The measurements shown in Figure 3.34 show a comparison of different lock
implementations. This analysis was done on the Skylake node using the small
particle system and a multipole order p = 1.

The default implementation uses mutex locks from the standard library. Since
the locks are stored contiguously several locks will reside in the same cache line.
This leads to false sharing of the locks. To avoid false sharing, the mutex locks
have been aligned and implicitly padded to 64 B each (the length of the cache line)
in the aligned plot. The MCS plot is using the MCS lock with aligned global locks.
As seen in the plot, the alignment alone induces a high performance improvement.
This improvement was as high as 40 % of runtime. But even between the aligned
mutex locks and the MCS lock an improvement of up to 12 % can be achieved
additionally. Most important, in all cases the aligned MCS lock outperforms the
aligned mutex implementation and baseline implementation. This makes the MCS
lock to the best choice as general purpose lock in the task engine.

One might argue to use a superior lock-free or wait-free implementation for
the queue instead of any lock. However, lock-free implementations introduce
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Figure 3.35: This benchmark uses the large particle system and a multipole order of 15. It
was conducted on the Skylake node.

additional fine-grained synchronizations, which might impede the scaling. Addi-
tionally, every thread has several sub-queues reducing the contention further.

3.7.6 REAL WORLD BENCHMARKS

This benchmark uses a real world example using a reasonable multipole order
p = 15 (see Figure 3.35). This analysis was done on the Skylake node using the
large particle system. Using all 52 cores, approximate 2000 reside on a single core.
The shown efficiency shows a consistently high performance up to 52 threads.
For 26 cores a parallel efficiency of 96.9 % was achieved. Even when crossing the
NUMA border no major performance drawback can be observed and the parallel
efficiency for 52 cores is 95 %. The runtime using 52 cores is 140 ms.

LOW ACCURACY

This benchmark uses the same example as the previous benchmark but with a
lower multipole order (see Figure 3.36). This analysis was done on the Skylake
node using the large particle system and a multipole order p = 5. The lower
multipole order leads to lower accuracy and thereby lower computational efforts.
Nevertheless, the benchmark reveals still a good overall performance. Using 26
cores a parallel efficiency of 92.6 % can be achieved. For 52 cores the parallel
efficiency is 87.7 % and the runtime is 43.3 ms.
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Figure 3.36: This benchmark uses the large particle system and a multipole order of 5. It

was conducted on the Skylake node.
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A C++ TASK ENGINE: INTER-NODE
EXTENSION

Until now, the proposed task engine was discussed with shared memory capabilities
in mind. For the parallelization on supercomputers inter-node parallelization
features are inevitable. Thus, the extension of the task engine towards inter-node
communication will be explained in this chapter.

Inter-node parallelization is not new in the field of high performance computing.
Already the first massively parallel supercomputers consisted of several nodes and
only a few cores per node. For those supercomputers, inter-node parallelization
was already required whereas intra-node parallelization was not necessary.

In contrast to shared memory parallelization, inter-node parallelization requires
explicit data transfer via messages from one node to another. This can be done
with the concept of message passing. One effort of standardizing the message
passing approach is visible in the message passing interface (MPI) standard [43].
Nowadays, implementations of the MPI standard are the de-facto standard for
inter-node communication in HPC [72].

The current version (3.1) of the MPI standard does not provide a C++ interface.
However, it is possible to directly use the C interface from C++. Independent of
the existence of a C or C++ interface, additional abstractions are necessary. This
has two main reasons: the first is the required separation of concerns and the
second is the simplification of the interface for the user. Separation of concerns is
important in order to stay flexible with respect to the underlying communication
library. For inter-node parallelization the task engine uses message passing.
This is not necessarily restricted to MPI and should be exchangeable for other
libraries supporting point-to-point communication. Directly using MPI functions
throughout the implementation would impede such an option.

Secondly, the simplification of the interface is needed since MPI requires sev-
eral parameters in a function call which could be inferred from the message data
automatically or even setup with default values. An early implementation of a
C++ MPI interface is provided by Boost.MPI [51]. Unfortunately Boost.MPI is
only an object oriented version of the MPI interface and does not hide all redun-
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dant parameters. Additionally, Boost.MPI is based purely on MPI, which would
require additional abstractions if other communication libraries should be sup-
ported. Another approach that drastically simplifies the user interface is provided
by “MPP: An MPI CPP Interface” by Pellegrini [95]. This library contains many
good thoughts on simplifying the interface using stream-like communication end-
points and stream operators on those endpoints. However, MPP only implements
point-to-point communication and the development is stalled since 2013. Never-
theless, some features of MPP can be recycled and extended for the proposed C++
communication layer in this work.

A completely different approach to handle inter-node parallelization is the
so called partitioned global address space (PGAS) approach, going beyond the
aforementioned simplification of the interface. This approach is implemented
by various libraries like HPX [70] or DASH [47] and language extensions like
Co-array Fortran [90], Charm++ [71] or UPC [48]. For the PGAS approach new
data-structures are provided behaving like normal non-distributed containers.
These data-structures are distributed among nodes and handle the data access
automatically. For the user of those libraries, the new data-structures behave
like local containers. Whenever remote data is accessed, the retrieval is done by
the library using its underlying communication capabilities. Typically, but not
necessarily, PGAS implementations improve the performance by using one-sided
communication via remote direct memory access (RDMA) [6].

This approach however has a drawback. The simple usability of those already
familiar data-structures lead to an underestimation of the performance costs by
the user. Since the distributed containers work similar to local data containers,
the user will be tempted to use them alike. At the same time, the costs of remote
data-access is in the range of microseconds which is 1000-fold higher than the
local access costs which is only in the range of nanoseconds. From a performance
point of view, this makes it too easy-to-use the interface incorrectly. Additionally,
this does not satisfy an important rule of user interface design: “Make interfaces
easy-to-use correctly and hard to use incorrectly.” [81].

Especially for latency-critical application, the cost of remote data-retrieval is
substantial. To efficiently parallelize latency-critical applications explicit com-
munication across node boundaries must be predefined by the user. This allows
for communication hiding or latency avoiding techniques in the message passing
layer. Hence, for latency-critical application the PGAS approach is too susceptible
for performance losses, since it cannot provide the same access to the communica-
tion methods as explicit communication. As a clarification it should be mentioned,
that automation is an advantage for any library. Also the communication layer
proposed in this work automates parts of the communication. Nevertheless, this
automation is done without raising the expectation of a purely local data-access.

In the communication layer of this work, the communication remains visible
and explicit. Communicating distributed data in the getter method (like the []
operator) of a container hides this performance penalty in an unfavorable way.
The interface of a library should not hide performance critical parts, unexpected
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by the user.

The communication between nodes using only node-local task engines imposes
another challenge — specific to task engines for message passing. Historically, the
point-to-point communication worked via bulk synchronous parallelism [113].
This means, data was computed in one phase and was communicated in another
phase after the computation. However, with a task engine as proposed in this work
the main synchronization points are dissolved due to the data-driven design. This
also means, that these now non-existing synchronization points cannot be used
for the communication anymore. Another pitfall is introduced by very tiny tasks
modifying only small amounts of data. Sending several small messages directly
after such a task is finished is not optimal. Small messages are dominated by the
network latency and will introduce a performance penalty. This means, the data
should be collected on the node and sent in larger chunks after a sufficient amount
of data is ready for communication.

4.1 THE MESSAGE PASSING INTERFACE (MPI)

The message passing interface (MPI) is a standard for inter-node communication.
It defines the semantics and syntax of communication functionalities. It was devel-
oped by academia and industry to standardize the programming of message-passing
programs. As of today, there are two main competitors for MPI implementa-
tions: MPICH [86] and OpenMPI [92]. Several other MPI implementations and
especially vendor implementations exist but are based on one or the other.

HISTORY OF MPI
The first version of the standard [42] consists of 129 functions and was published
in 1994. It includes point-to-point communication as well as collective commu-
nication. It also includes language bindings for C and Fortran77, but not for
C++. Version 2.0 was published in 1997 and includes 221 functions. Process
management, parallel I/0 capabilities as well as one-sided communication had
been added to the standard. Additionally, new language bindings for C++ [105]
had been introduced with version 2.0.

In 2012 the significantly increased version 3.0 of the standard was published

Point-to-point SH Hl tleIr fe(1)ce C++ interface removed
Collectives arallel I/ Non-blocking collectives

\ On/e_Sided ® \ ®

MPI 1.0 MPI 2.0 MPI 2.1 MPI 3.0 MPI 3.1

1994 1997 2008 2012 2015
Year

Figure 4.1: Historical development of MPI versions and major features.
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MPI Process O: MPI Process 1:

double send [10]; double recv [10];

MPI_Send(send, 10, MPII_DOUBLE, 1,...) MPI_Recv(recv, 10, MFI>I_DOUBLE, 0,...)

Figure 4.2: Schematic view a single point-to-point communication via MPI. Sender rank 0
sends 10 consecutive doubles to receiver rank 1.

LISTING 4.1:

1 int MPI_Isend(const void * buf,

2 int count,

3 MPI_Datatype datatype,
4 int dest,

5 int tag,

6 MPI_Comm comm,

7 MPI_Request * request);
8

9 int MPI_Irecv(void * buf,

10 int count,

11 MPI_Datatype datatype,
12 int source,

13 int tag,

14 MPI_Comm comm,

15 MPI_Request * request);

including 443 functions. Especially non-blocking collectives and new one-sided
communication features like RDMA support had been added. Besides this, the C++
language bindings was removed again. With minor changes, Version 3.1 [43] is
the most current MPI standard available today.

4.1.1 BASic MPI COMMUNICATIONS

In the following, the semantics of certain MPI communication functions will be
discussed. For the task engine mainly two-sided communication and collectives
are used. The syntax is shown for a few selected methods only. For a full list
of MPI functions and features, the standard for version 3.1 [43] of MPI can be
consulted.

POINT-TO-POINT COMMUNICATION

Point-to-Point communication is an elemental communication approach. It in-
volves two communicating MPI processes called ranks. One is the sending process
and the other one is the receiving process. Both processes are required to call the
corresponding send and receive functions. The sending process provides the data
to be sent and the receiving process provides a sufficiently large block of memory
to receive the data.

The send and receive functions can be called in a blocking or non-blocking
fashion. In the following the non-blocking send and receive calls are explained

88



4.1 The Message Passing Interface (MPI)

void * buf

count

Figure 4.3: Layout of the data required by MPI for sending and receiving.

in more details: Listing 4.1 shows the interface of the non-blocking send and
the non-blocking receive functions. Both methods require message data specific
parameters (see Figure 4.3): a void pointer to a buffer, a count and an MPI
datatype. For the sending process, this reflects the data which should be sent and
for the receiving process this defines the memory allocation for the data received.
For both functions, the void pointer called buf points to the first element of the
data. The count variable represents the number of elements in this buffer and
the MPI datatype is the internal MPI type of an element of the data. In the case
of send, the buffer might be constant, since it this is a read only operation. This
constant correctness for the C interface was introduced with the MPI 3.0 standard
leading to a slight inconsistency between different MPI versions. Next, send and
receive require the arguments which are part of the so called message envelope:
the source or destination, the tag and the communicator. The message envelope
is used for identifying matching send and receives. Additionally, for the non-
blocking methods, an MPI_Request pointer must be added as the last function
parameter. This request object holds information about the communication itself.
After a non-blocking send or receive was emitted, the communication might not
be finished right away and the request must be used for testing or waiting on this
specific communication handle using MPI_Test or MPI_Wwait.

COLLECTIVE COMMUNICATION

In contrast to point-to-point communication, collective communication involves
all MPI processes belonging to a communicator or group of ranks. Examples of
collective communications are gather, allgather, broadcast and alltoall. As an
example only allgather should be explained in the following. A gather collects data
from all participating processors in the communicator. An allgather additionally
distributes this gathered data back to all processors within the same communicator.

Listing 4.2 shows the allgather function reference from the MPI standard. All
MPI processes (ranks) that are part of the communicator must emit this function
call. The data which should be sent in this communication is denoted by the void
pointer to the send buffer, the send count and the send MPI datatype. As in the
MPI_Isend function shown before, the send buffer can be provided const qualified.
The receiving data is denoted by the receiving buffer pointer, the receiving count
and the receiving MPI datatype. Additionally, the communicator for collectives
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LISTING 4.2:

1 int MPI_Allgather(const void * sendbuf,
2 int sendcount,

3 MPI_Datatype sendtype,
4 void * recvbuf,

5 int recvcount,

6 MPI_Datatype recvtype,
7 MPI_Comm comm)

LISTING 4.3:

template <typename value_type>
struct XYZ {
value_type X, y, z;

1
2
3
4 }l
must be set. In this case, the send count denotes the number of data sent in the
allgather. The receive count denotes the total number of elements received.

MPI DATATYPES

For the communication MPI uses MPI datatypes internally. These datatypes
correspond to the distinct type used in the communication. For heterogeneous
platforms this feature helps converting the data to the correct format, e.g. little-
endian and big-endian for floating point numbers. MPI offers several intrinsic
datatypes like MPI_DOUBLE or MPI_INT. For more complex or composite datatypes,
MPI offers so called derived datatypes like MPI_Type_contiguous. These derived
datatypes are composed from basic datatypes using MPI datatype constructors.
With MPI_Type_contiguous, datatypes consisting of contiguous elements of the
same type can be combined into a new datatype. For the communication, MPI
analyzes the datatype and passes through the memory correspondingly. In contrast,
derived datatypes do not need to be contiguous in memory. Internally MPI
represents the datatype using two sequences, a sequence of basic datatypes and a
sequence of displacements. This allows arbitrary datatype definitions.

EXAMPLE OF POINT-TO-POINT COMMUNICATION

The following example is used to illustrate basic point-to-point communication
with MPI. It will be used as basis for later simplification and abstraction towards
a high level user interface. For a realistic communication example a generic
three-dimensional coordinate is used (see Listing 4.3). It consists of three member
variables of the type value_type. These could be float or double. In the following,
objects of this class should be sent and received using point-to-point communica-
tion.

The send and receive example shown in Listing 4.4 uses a vector containing 10
coordinate objects. The object was initialized for coordinates of type double. At
first, a derived MPI datatype needs to be created (at line 4). Since the elements are
contiguous in memory, a contiguous MPI datatype with three contiguous elements
of type MPI_DOUBLE is used.
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LISTING 4.4:

std: :vector<XyYzZ<double>> send_coordinates(10), recv_coordinates(10);

MPI_Datatype datatype = MPI_DATATYPE_NULL;
MPI_Type_contiguous(3, MPI_DOUBLE, &datatype);
MPI_Type_commit(&datatype);

int my_rank, num_ranks;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &num_ranks);

O 0 N O U b~ W N =

- e e
w N = o

int recv_from = (my_rank + 1) % num_ranks;
int send_to = (my_rank - 1 + num_ranks) % num_ranks;

= e =
N O g b

MPI_Send(send_coordinates.data(),
send_coordinates.size(),
datatype,
send_to,

O/
MPI_COMM_WORLD);

NNNDN N ==
AW N R O O ®

MPI_Status status;
MPI_Recv(recv_coordinates.data(),
recv_coordinates.size(),
datatype,
recv_from,
OI
MPI_COMM_WORLD,
&status);

W oW NNNDNN
= O O 0 N o G»

Afterwards, basic information of the communicator are requested, like local rank
id and the size of the communicator (at line 8). The rank id of the sending and the
receiving process are calculated from this information. The shown communication
scheme will send to the “left” (—1) and receive from the “right” (+1).

After these preliminary steps, the call to MPI send will be executed on line 17.
MPI requires that the data used in the communication resides in contiguous
memory. Since the implementation of std: :vector is guarantied to store the data
contiguously, it can be used directly for sending and receiving. Thus the data()
method of the vector returns a pointer to the first element in the vector. The next
parameter count provides the length of the vector. The datatype and destination
rank have been created beforehand and are now used in the function call. For this
communication no special tag was used and the default value zero was applied.
The last parameter represents the communicator. Since for this example no special
communicator is used, this is set to the default MPI_coMM_wORLD. The receive call
works similar (at line 25), except that an additional status object is added as last
parameter.

In this example each MPI process will hold two coordinate vectors. The first
vector is named send_coordinates and is sent to the “left” neighbor. The second
vector is named recv_coordinates and will be used for receiving the coordinates
of the “right” neighbor.
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4.1.2 MULTITHREADED MPI
Up until now, each rank only consists of a single MPI process and no additional
threads spawned by the user existed. To allow messages to be issued from other
threads and not the main MPI process, MPI needs to be made aware of this fact.
Using MPI in a multithreaded fashion is still a recent topic of research and needs
to be handled carefully because of the additional locking of shared memory done
inside MPI. For a small number of cores per node it has been sufficient to ignore
threading entirely and use multiple MPI processes (ranks) per node. However, with
an increasing number of cores per node the overhead due to multiple MPI processes
on a single node will increase. Especially in settings with a large number of nodes
and hundreds of cores per node, the synchronization of collective operations
will be costly. Additionally, the penalty of forgoing shared memory advantages
for exchanging data on the node is a substantial performance drawback. These
reasons make it necessary to take a closer look at multi-threaded MPI.

The MPI standard itself provides the following thread-safety modes:

MPI_THREAD_SINGLE The process is not multithreaded.

MPI_THREAD_FUNNELED The process can be multithreaded but only one thread is
allowed to emit MPI function calls.

MPI_THREAD_SERIALIZED The process can be multithreaded and all threads are
allowed to emit MPI function calls, but not concurrently.

MPI_THREAD MULTIPLE The process can be multithreaded and the use of MPI is
not restricted.

Despite the modes described in the standard an implementation is only required
to implement MPI_THREAD_SINGLE. Also it should be noted that, current multi-
threaded MPI implementations do not always improve the performance when used
with multiple threads. Rather the opposite is true, multithreaded MPI introduces
a performance drawback [52, 110]. Therefore it could be beneficial to implement
different communication models like communicating using a single thread for the
communication in funneled mode. This requires the task engine to allow flexibil-
ity and also requires it to adapt the model available and best supported by the
MPI implementation.

4.1.3 SHORTCOMINGS OF MPI
The MPI standard increased significantly over time with more than 400 functions
in the latest standard (3.1). For the communication layer proposed in this work,
only a few functions of the MPI standard will be used. These functions are
mainly two-sided point-to-point functions and a few collective communications
functions. This means, more than 90 % of the standard will be ignored for this
implementation.

The size of the standard also became a burden for MPI itself [104]. Adapting new
hardware features while maintaining backward compatibility is almost impossible.
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Additionally, MPI is supposed to be used by application developers as well as
library developers. This requires compromises for both sides and leads to a
standard which does not fit either [36].

Another shortcoming can be found in the message matching of MPI performed
for the receiving of messages internally. Message matching is an essential feature,
since a high ratio of the communication time is spent in it [72]. The message
matching is utilizing the message envelope containing source, tag and commu-
nicator. Since the MPI standard allows wildcards to be used for the source and
the tag (MPI_ANY_TAG or MPI_ANY_SOURCE) the message matching is impeded. To
realize wildcard-based message matching two queues are required internally. One
for expected messages (the receive function was called already) and one for unex-
pected messages (no receive function called yet). If a new message arrives, the
expected message queue will be traversed and a matching receive is searched. If
no matching receive can be found, the message will end up in the unexpected
message queue.

If an upcoming MPI standard denies the capability of using wildcards in the
message envelope, namely any source or any tag, the implementation of the
message matching could be done faster [30]. Since the tag and source are distinct,
the message envelope can be hashed and therefore hash-tables can be used instead
of queues. In contrast to the average complexity of O(n) for searching an element
in a queue, a hash-table provides O(1) complexity. Reducing the time spent for
the message matching will particularly decrease the latency of receiving a message
which is of major importance for latency-critical applications.

For the proposed communication layer these shortcomings mean, that the
implementation needs to be independent from the underlying communication
library. MPI can be used as a default library supported on the most supercomputers
but it should be possible to exchange MPI with other low level communication
libraries.

4.2 A C++ COMMUNICATION LAYER

In this section the communication layer of the task engine will be introduced. The
discussion of MPI yields two requirements for the communication layer:

> the simplification of the high level user interface and
> the separation of concerns.

The simplified user interface should relieve the algorithm developer from setting
redundant parameters in the communication process. Especially parameters that
could either be deduced from the program (like datatypes) or set to reasonable
default values (like communicator or tag). An ideal point-to-point communication
would only require to set the corresponding sender or receiver and the data to
be transferred itself. Everything else, like serialization, datatype resolving and
counting should be performed by the communication layer.
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LISTING 4.5:

template <class T>
struct MpiTypeTraits {
static MPI_Datatype GetType() {
return MPI_DATATYPE_NULL
}
}

N O s W N

LISTING 4.6:

template <>
struct MpiTypeTraits<int> {
static MPI_Datatype GetType() {
return MPI_INT;
}
}

N O s W N

4.2.1 MPI TYPE TRAITS

As mentioned before, MPI uses its own internal datatypes for the communication.
C++ is a typed language and therefore it is not necessary to declare the datatype
manually. This can be done automatically by using TMP type traits mapping the
C++ type to the corresponding MPI datatype.

Listing 4.5 shows the primary definition of the class template MpiTypeTraits.
The type trait class is used to retrieve the MPI datatype directly from the data
communicated. This class has a template parameter T reflecting the C++ type
of the data. Additionally, the class has a static function GetType returning the
corresponding MPI datatype. This means, the type T is mapped to the correspond-
ing MPI datatype using the GetType method. The primary template also defines
the default MPI datatype, which is set to MPI_DATATYPE_NULL. To provide a new
mapping between a C++ and an MPI datatype, this class template needs to be
specialized for this type.

Listing 4.6 shows the specialization for the int type. This basic datatype is
mapped to the MPI datatype MPI_INT. For all basic MPI datatypes this works
correspondingly.

LISTING 4.7:

1 template <typename SUBT>

2 struct MpiTypeTraits<XYZ<SUBT>> {

3 static MPI_Datatype GetType() {

4 static MPI_Datatype type = MPI_DATATYPE_NULL;
5 if (type == MPI_DATATYPE_NULL) {

6 MPI_Type_contiguous(3, MpiTypeTraits<SUBT>::GetType(), &type);
7 MPI_Type_commit (&type);

8 }

9 return type;

10 3}

1 };
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LISTING 4.8:

template <typename T>
struct MpiTypeTraits<const T> {
static MPI_Datatype GetType() {
return MpiTypeTraits<T>::GetType();
}
Y

N O s w N

Additionally, type traits can be nested and thereby used for the creation of
derived datatypes. The three-dimensional coordinate shown in Listing 4.3 is an
example of a contiguous datatype. It consists of three contiguous elements of the
generic type value_type. Since this value type can be used with different concrete
types, the type trait must be generic as well. For this purpose the type trait class
must be partially specialized (see Listing 4.7) using the template parameter SUBT.
The shown type trait is valid for all three-dimensional coordinates using the value
type SUBT.

The static GetType method has an additional static variable called type. This
is initialized once and set to MPI_DATATYPE_NULL. Since this is a static function
variable, every subsequent call to this method uses the same variable. The actual
MPI datatype is constructed using the datatype constructor MPI_Type_contiguous
for three contiguous elements. The datatype of the element can be retrieved by
using the type traits class itself and by resolving the corresponding MPI datatype
for suBT.

However, these C++ type traits hold a problem. Since C++ types differ for
not qualified of const qualified types, a separate type for int and const int is
required. A tedious over-definition of types could be solved by nesting type traits
as well (see Listing 4.8). This type trait specialization maps a type const T and
resolves it by calling the type trait class for the type T.

The nested type trait functionality is very powerful but unfortunately has its
own design flaw. The implementation shown here is not thread-safe. In the case
of multithreaded communication, a mutex or atomic flag must be used for the
synchronization. The thread starting the registration must be the only thread
registering the type. All other threads need to wait until the type is full registered.

4.2.2 SERIALIZATION

MPI datatypes are not always the best solution for sending data. For some datatypes
it is beneficial to use serialization (a stream of bytes without a type) instead
of MPI datatypes for the communication. This can have two different reasons:
The first reason is, that compiled serialization is faster than dynamic interpre-
tation of MPI datatypes [104, pp. 6]. The second reason is, that some complex
C++ data structures cannot be mapped to MPI datatypes (e.g. objects containing
dynamic allocations) in a reusable fashion. Therefore, an additional serialization
infrastructure is required besides the aforementioned MPI type traits.

Since the algorithm developer knows the algorithm-specific data in depth, the
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XYZ serialize
_— | serialization buffer
double x
double y i X y z
double z deserjalize

Figure 4.4: Schematic flow of the serialization and deserialization of the three-dimensional
coordinate.

serialization methods of an object must be provided by the algorithm developer.
Intuitively serialization requires three methods: one for serialization, one for dese-
rialization and another for calculating the required memory size of the serialized
object. As shown in the following example, this can be reduced to a single method
which provides the same serialization capabilities. This makes the interface for
the high level algorithm developer much simpler and reduces unnecessary code
duplication. The described interface is adapted from the Boost serialization li-
brary [99] and extended to support nested data structures.

As an example the three-dimensional coordinate from Listing 4.3 should be
serialized. For the serialization a serialization buffer is required. To allocate an
appropriately sized buffer, the serialized size of the three dimensional coordinate
needs to be calculated. Then, the serialization itself is performed by copying the
coordinates into the serialization buffer (see Figure 4.4). The order in which the
elements of the object are copied into the serialization buffer is not important. It is
only important, that the order for serialization is the same as for the deserialization.
The deserialization reinterprets the bytes in the serialization buffer and stores the
floating point values in the coordinates (x, y, z) again.

The important finding from this example is, that the serialization and deserial-
ization of an object is basically the same. For the serialization data is copied from
an object into the serialization buffer and for the deserialization the data is copied
out of the serialization buffer into the object. This means, it must be sufficient
to require a single serialization method to be implemented by the user. Then,
this scheme will be used for both serialization and deserialization. Additionally,
the serialization tools proposed in this work will determine the serialized size
required by the object automatically.

The serialization is implemented using different overloads of the ampersand
operator (&) depending on different serialization buffer adapters. These overloads
are used internally and no additional implementations by the algorithm developer
are required. In the following the serialization of a single object is explained in
more detail. The serialization of several objects of the same type in a vector or
array is performed by a data wrapper by iterating and serializing each object
separately.

THE HIGH LEVEL ALGORITHM DEVELOPER’S VIEW

Let’s discuss the required serialize method for the three-dimensional coordinates
example (see Listing 4.9). The signature of the serialize method is predefined by
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LISTING 4.9:

1 struct XYz {
double x, y, z;

2

3

4 template <typename SerializationAdapter>

5 void serialize(serial::SerializationBuffer<SerializationAdapter> & s_buf) {
6 s_buf & x;

7 s_buf & vy;

8 s_buf & z;

o }

10 }

LISTING 4.10:

1 struct Xyzq {
XYZ<double> coordinates;
double q;

template <typename SerializationAdapter>
void serialize(serial::SerializationBuffer<SerializationAdapter> & s_buf) {
s_buf & q;
s_buf & coordinates;
}
}

S OV N O U A WN

-

the serialization library. It encompasses one template parameter defining the seri-
alization adapter. The single function parameter is a serialization buffer passed
by reference using the serialization adapter from the template parameter. The
function body defines the serialization and deserialization order using the amper-
sand operator (&). In this example the order of serialization and deserialization is
first x, then y and finally z. The serialization will start copying the x coordinate
into the serialization buffer, afterwards the y coordinate and lastly the z coordi-
nate. This order is completely arbitrary and can be changed by the user since the
deserialization copies the values from the serialization buffer into the object using
the exact same order.

Additionally, the ampersand operator supports nested data structures. This can
be used for more complicated objects consisting of sub-objects. In this case, the
algorithm developer starts by defining the serialize methods for the sub-objects.
Afterwards the serialize method of the composed object can use the ampersand
operator to define the serialization order of the sub-objects. Listing 4.10 shows
an example of a class using the three-dimensional coordinate and an additional
charge q. It should be mentioned again, that the order of serialization does not
need to be the same as in the class definition.

THE LOW LEVEL LIBRARY DEVELOPER’S VIEW

The high level user interface has been presented, but the design of the internal
structure requires further explanation. The signature of the serialize method (see
Listing 4.9) is fixed to a single function parameter. This single function parameter
is the serialization buffer. The serialization buffer can be used with different
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LISTING 4.11:

template <typename value_type>
typename std::enable_if<IsSerializeable<value_type>::value, void>::type
operatoré&(value_type & value) {

value.serialize(*this);

}

W N U W N

=]

template <typename value_type>
typename std::enable_if<!IsSerializeable<value_type>::value, void>::type
operatoré&(value_type & value) {

SerializationAdapter: :Apply(value, storage_);

}

e e e
w N = O

LISTING 4.12:

1 struct InputSerializationAdapter {

2 template <typename value_type>

3 static void Apply(const value_type & value, storage_impl & storage) {
4 const auto begin = reinterpret_cast<const serial_byte *>(&value);

5 const auto end = begin + sizeof(value_type);

6 std::copy(begin, end, storage.GetNextBytes(sizeof(value)));

7

8

}
}

adapters. The three available adapters are:
InputSerializationAdapter This adapter is used for the serialization.
OutputSerializationAdapter This adapter is used for the deserialization.

SizeAdapter This adapter is used to determine the serialized size of the object
internally.

For the serialization, the serialize buffer implements the ampersand operator
(see Listing 4.11). This method has a template parameter value_type representing
the right side of the ampersand operator. For the three-dimensional coordinate
this would be a floating point type. In the nested case, this is the type of the
sub-class. To enable nested serialization, the operator implementation uses the
TMP feature SFINAE. In Listing 4.11, the first implementation is used for the
nested serialization case. The type trait IsSerializeable<...> checks if a certain
type value_type has a serialize method. If value_type has a serialize method, the
serialization is forwarded to the serialize method of the sub-object.

In case the type has no serialize method, the second implementation is respon-
sible. In this case, the serialization adapter is called with the value and the serial-
ization buffer as parameter. For an input adapter this means, the value is copied
from the value into the serialization buffer. For an output adapter the element
will be copied out of the serialization buffer into the value variable.

Listing 4.12 shows the apply method of the InputSerializationAdapter. The
value will be reinterpreted as bytes and copied into the serialization buffer. The

98



4.2 A C++ Communication Layer

LISTING 4.13:

1 struct SizeAdapter {

2 template <typename value_type>

3 static void Apply(value_type &, storage_impl & storage) {
4 storage += sizeof(value_type);

5}

6 3;

OutputSerializationAdapter is similar, except that it copies data from the serial-
ization buffer into the value.

DETERMINING THE SERIALIZED SIZE

As mentioned before, the algorithm developer only needs to define the serialization
in a single method. However, for the allocation of an appropriate serialization
buffer the size of the serialized object is required. The manual computation of the
serialized size by the algorithm developer would be quite error-prone. The user
might overestimate or underestimate the required serialized size, e.g. by adding
unnecessary padding to the serialized size. The proposed interface using a single
serialize method ensures that the serialized size is determined correctly using the
same procedure as for the serialization itself.

This is done using the size adapter shown in Listing 4.13. Every time the input
adapter attempts to copy the value into the serialization buffer, the size adapter
only adds up the size of the element. Thereby the size is calculated element by
element considering exactly the elements used in the serialization itself. This
ensures, that the size is determined accurately and the serialized object is stored
correctly.

4.2.3 ENCAPSULATION OF MESSAGE DATA

Message passing is mainly about how to transfer data and thereby about the actual
message data. The interface between the algorithmic data and the message data
used by MPI plays a key role for providing a high level user interface. The
user interface should accept arbitrary data provided by the user and prepare
it accordingly for the communication. Examples for this data are the three-
dimensional coordinates or the triangular array of a multipole expansion. The data
provided by the user must be handled differently for different types. Depending
on the datatype it must be serialized (multipole) or a corresponding MPI datatype
must be created (three-dimensional coordinate). Nevertheless, the algorithm
developer should be able to send a three-dimensional coordinate or a triangular
array without being bothered by the internal serialization or type registration.

MPI DATA

For the interface between MPI data and the algorithmic data it is important to
repeat the requirements introduced by MPI. MPI message data consists of three
parameters: a void pointer to a buffer, a count and an MPI datatype (see Figure 4.3).
Additionally, MPI expects contiguously stored elements of the type reflected by
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DataWrapper

- buf_: DataType
3 Y buf_ &

DataType

+ MPIBuf() const : void *

+ MPICount() const : int

+ MPIType() const : MPI Datatype
+ NewRequest() : MPI_Request *

Figure 4.5: Parts of the Datawrapper UML class diagram. Only the internal member
variables are shown.

the MPI datatype. Depending on the message size and the MPI datatype, MPI
might copy the data internally into its own internal buffer. However, the data
must not be deleted until a communication is finished. This makes it reasonable
for the high level interface to combine the data with the request object to ensure
data consistency while a communication is still pending.

DATA WRAPPER

The data wrapper provides the interface between algorithmic data and the under-
lying communication library. For the default implementation this is MPI. The data
wrapper is responsible for preparing the data from the algorithm to be sent using
the underlying communication library (e.g. MPI). It also includes the serialization
and the datatype registration within MPI.

Let’s describe the data wrapper in more detail starting with the interface to
the algorithmic data. This interface is provided by various constructors of the
data wrapper. For example, a data wrapper can be constructed using a standard
vector. The buffer will store a reference to the first element in the vector and the
counts are taken from the size of the vector. It is also possible to extend this by
user-defined constructors.

During the object construction, the data wrapper checks if the provided data
needs serialization. If the data wrapper finds an appropriate MPI datatype, this
datatype is used otherwise the data will be serialized. If the provided data neither
does have an MPI datatype nor a serialize method exists, a compile time error will
be emitted.

The serialization works as follows: At first, the serialized size of a single object
will be determined using the serialization library proposed. Afterwards, a serial-
ization buffer will be allocated fitting all serialized objects. Then, the data will be
iterated, object by object and serialized one after another into the serialization
buffer.

The class methods for this interface can be seen in the UML class diagram in
Figure 4.5. The methods work as follows:

MPIBuf This method returns the buffer pointer used for the communication. If
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the data can be sent without serialization, it returns the pointer to the
original data provided by the user. This method automatically converts the
typed pointer used internally to a void pointer required by MPI. If the data
needs serialization, this method returns a pointer to the internal serialization
buffer. In this case, the pre-processing has serialized the data already and
the serialization buffer can be used for MPI.

MPICount This method provides the count for the corresponding data object. If
the data is sent using an MPI datatype, this method returns the number of
elements in the data. In the case of serialization, this method returns the
number of bytes in the serialization buffer.

MPIType This method provides the MPI datatype for the communication. If
the data will be sent serialized, this method automatically returns MPI_BYTE.
Otherwise this method will use the MPI type traits to resolve the MPI datatype
automatically. This also involves the registration of derived datatypes if
necessary.

NewRequest In the case of non-blocking communication, this method is used to
create a new request object. The request object will be stored internally and
the data wrapper can be queried for open communications. Additionally,
the data wrapper waits for open request during the destruction. This avoids
errors due to communication performed with deleted data.

The interface shown here, is specialized for communication with MPI. For
other libraries, the methods may differ. If another library can handle typed
pointers instead of void pointers, this could be adapted quickly. Additionally,
other parameters could be added if it is required by the communication library.

4.2.4 Low LEVEL MPI WRAPPER

The MPI wrapper represents the interface between communication layer and the
underlying MPI interface. Technically it is the only wrapper that is allowed to
call MPI functions directly. All other layers above this layer must use the MPI
wrapper. The MPI wrapper uses the concept of encapsulated data inside the data
wrapper and automatically extracts the required MPI function parameters from it.
Due to this design, the MPI wrapper is not able to handle data directly but data
provided by data wrappers.

Listing 4.14 shows the implementation of the MPI wrappers version of a non-
blocking receive. This example shows, how the communication done by the
RecvPointToPointWrapper is simplified. The RecvPointToPointwrapper has a vari-
adic method RecvFromRank (see Listing 4.16). The first parameter of this method
is the source rank index. The remaining variadic parameters are forwarded to
one of the various constructors of the batawrapper. This data wrapper is then
handed over to the MPI wrapper function. The actual non-blocking receive func-
tion requires a data wrapper, a source rank index, a tag and a communicator.
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LISTING 4.14:

1 template <typename recv_type, typename... AdditionalRecvTypes>

2 void Irecv(DatawWrapper<recv_type, AdditionalRecvTypes...> & recv_data,
int source,

4 int tag,

5 MPI_Comm comm) {

6 MPI_Irecv(recv_data.MPIBuf(),
7
8
9

w

recv_data.MPICount(),
recv_data.MPIType(),
source,

10 tag,

11 comm,

12 recv_data.NewRequest()
13 );

14 }

LISTING 4.15:

1 template <typename send_type,

2 typename... AdditionalSendTypes,

3 typename recv_type,

4 typename... AdditionalRecvTypes>

5 void Allgather(DataWrapper<const send_type, AdditionalSendTypes...> & send_data,
6 DatawWrapper<recv_type, AdditionalRecvTypes...> & recv_data,

7 MPI_Comm comm) {
8 MPI_Allgather(
9 conditional const_cast(send_data.MPIBuf()),

10 send_data.MPICount(),
11 send_data.MPIType(),
12 recv_data.MPIBuf(),
13 recv_data.MPICount(),
14 recv_data.MPIType(),
15 comm

6 )

17 3}

Therefore, the RecvPointToPointWrapper only needs to create the data wrapper
and delegates everything to the MPI wrapper non-blocking receive function.

The data wrapper is responsible for the data abstraction. Hence, the call to
MPI_Irecv takes the buffer address, the count, the MPI datatype and even the
request object from the data wrapper. Whether the buffer returned from the data
wrapper represents the original data or a serialization buffer of the original data
is completely encapsulated in the wrapper and unknown to the MPI wrapper.

Next, let’s discuss abstractions for collective functions. Listing 4.15 shows the
implementation for an allgather call. In contrast to the non-blocking receive this
method requires two data wrappers. One for the data to be received and one for
the data to be sent. The transfer of required MPI function parameter work similar
to the non-blocking receive.

4.2.5 HIGH LEVEL COMMUNICATION INTERFACE
The communication layer contains two high level communication interfaces:

> one for point-to-point communication
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LISTING 4.16:

1
2 PointToPointWrapper<XYZ<double>, BlockingCommunication> pt2ptw(comm_wrapper);
3 pt2ptw.SendToRank(send_rank, coordinates);

4 pt2ptw.RecvFromRank(recv_rank, recv_coordinates);

LISTING 4.17:

PointToPointWrapper<MultipoleType, NonBlockingCommunication>
pt2ptw_multipole(comm_wrapper);

pt2ptw_multipole.RecvFromRank(recv_rank, recv_omegas);

pt2ptw_multipole.SendToRanks(send_ranks, send_omegas);

w0 N oA W N -

9
10 pt2ptw_multipole.WaitForAllRecv();
11 pt2ptw_multipole.waitForAllSend();

2 and another one for collective communication.

In the following, these two high level user interfaces will be presented in detail.

THE INTERFACE FOR POINT-TO-POINT COMMUNICATION

In Listing 4.4 an MPI communication example using point-to-point communication
was shown. Listing 4.16 shows the equivalent MPI communication using the
high level point-to-point interface of the proposed communication layer. At the
beginning of the listing, a PointToPointWrapper for the desired type (XYz<double>)
is created. The second template parameter of the PointToPointwrapper defines
whether the communication should be executed blocking or non-blocking. The
available options are thereby BlockingCommunication and NonBlockingCommuni-
cation. Afterwards, the wrapper can be used for sending and receiving data of
the type XYz<double> using the methods SendToRank and RecvFromRank. These
methods require two parameters. The send method requires a destination and the
data which should be sent. Additionally, the destination for the send method can
either be a single rank id or an iterable container of rank ids. This can be used for
sending the same data to several destinations without providing an explicit loop.
The receive method requires a source rank id and the data used for retrieving.

A more advanced use case is shown in Listing 4.17. In this example, mul-
tipole expansions from the FMM implementation are sent and received using
non-blocking communication. The data-structure of the multipole expansion is
more complicated then the three-dimensional coordinate example. It involves dy-
namic allocations and thus the creation of a reusable MPI datatype is not possible
anymore. The multipole data must be serialized prior to communication. The
serialization interface and the data wrapper perform this operation automatically.

Non-blocking communication always involves request objects. These objects
hold open requests and are stored inside the data wrappers and can be used for
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LISTING 4.18:

CollectivesWrapper<XYZ<double>, BlockingCommunication>
cw_particles(comm_wrapper);

cw_particles.BindSendData(local_particles);

1
2
3
4
5
6
7 cw_particles.BindRecvData(ordered_particles, local_particles.size());
8

9

10

cw_particles.Allgather(particle_dist);

testing or waiting. This is done with the wait methods shown at the end of the
listing. However, it is not strictly required to call the wait methods explicitly. The
point-to-point wrapper manages all data wrappers with open request automatically.
The destructor of the point-to-point wrapper waits for all open requests ensuring
a correct finalization of the communication. Nevertheless, the explicit waiting
should be preferred to avoid errors like working with inconsistent data that has
not been fully received yet.

THE INTERFACE FOR COLLECTIVE COMMUNICATION

The collectives wrapper provides the user interface for collective communications.
Collective communication always involve data for sending or for retrieving. Some
collectives require both on all participating processes (e.g. allgather, alltoall) and
some require only one or the other for some processes (e.g. gather, broadcast).

Listing 4.18 shows the three-dimensional coordinates example using the high
level user interface. The collectives wrapper is created for the three-dimensional
coordinate type and blocking communication. In contrast to the point-to-point
wrapper, the collectives wrapper requires to add the used send and receive data
separately. Since not all processes may require send and receive memory, the
data can be set using the methods BindSendData and BindRecvData. After setting
the receive and sent data, the actual collective can be called. In this example this
is done using the Allgather method.

4.3 TASK ENGINE COMMUNICATION EXTENSION

The proposed communication layer provides an easy-to-use high level user inter-
face for inter-node communication. The combination of this communication layer
and the task engine imposes further challenges which need to be handled.

The task engine focuses on applications using fine-grained tasks. Classical com-
munication usually communicates in a bulk synchronous way [113]. After a phase
of computation a phase of communication follows. However, synchronizations
between larger phases of an application are dissolved by the data-driven approach.
This means, these synchronizations cannot be used for bulk communication any-
more.

Additionally, fine-grained tasks compute the data in small portions piece by
piece. Referring to the a-B model [57] the communication time t for a message of
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LISTING 4.19:

class SendQueue {

1
2
3
4 void AddReadyItem(data_type const & item) {
5 std::lock _guard<std::mutex> lock(mutex_);
6 ready_items_.emplace_back(item);

7

8

9 if (ready_items_.size() == waiting_buf_size )

10 send();

11 }

12

13 void send() {

14 send_pt2pt_wrapper_.SendToRanks(recipients_, std::move(ready_items_));
15 ready_items_.clear();

16 3

17
18 };

length n, with bandwidth r and latency ¢, is given by:
t=ty+n-r. (4.1)

If the message is very small, the latency will dominate the time spent in the
communication. This also means, communicating small chunks of data after
successfully executing a single task will be slower than sending larger chunks of
data after several tasks have finished. Therefore, the data will be buffered in a
send queue before sending.

4.3.1 COLLECTING SEND DATA FROM DIFFERENT TASKS

The send queue is used for buffering data before communication takes place (see
Listing 4.19). The send queue is configured upfront by the user by defining the
chunk size and the recipients. After the computation of the data inside a task
is finished, the data will be added to the send queue. When the desired chunk
size is reached, the send queue will automatically send the data to the requested
recipients.

Another problem arising from the modified communication scheme is the iden-
tification of the data. For bulk synchronous communication, a defined set of
ordered data will be send. The corresponding receiver exactly knows the data and
the order it arrives (assuming message ordering). As an example the 10 multipole
expansions could have the ID starting from 100 to 109. Using the send queue,
it can be ensured to send a 10 multipole expansions, but the IDs could be in an
arbitrary order. Even worse, if the chunk size was set to a fixed size, it is not
known which multipole expansion will be sent in which message.

A workaround could be to employ the MPI tag for communicating the identifiers.
This would imply that we have to use a wildcard tag matching on the receiving end
of the communication. Additionally, the tag feature itself is limited and therefore
this workaround is not a sustainable solution.
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The problem can be solved by extending the serialization tools discussed earlier.
For the buffered send, a small meta-data object is added before the regular data
in memory. This meta-data object consists of the number of elements serialized
and the identifiers used internally. This is done internally, the user does not need
to specify the extension with meta-data.

4.3.2 DYNAMICALLY RECEIVING MESSAGES

Another issue for the task-based inter-node communication is the receiving of
messages. As discussed before, multithreaded MPI introduces several performance
drawbacks. Restricting the receiving to a single threads can be advantageous in
this case.

A simple solution for the receiving of messages could be to post all non-blocking
receives of an MPI process at the beginning and constantly check if a request is
finished. However, determining all receive calls upfront might be cumbersome.
Besides this, calling all receives upfront might also be a performance bottleneck.
Additionally, testing a request using MPI_Test involves an internal critical section.
Therefore it should be avoided to frequently call MPI_Test from concurrent threads.

The receiving mechanism offered in the task engine is restricted to a single
communication thread. This thread frequently probes MPI (MPI_Iprobe) for new
messages. If a new message is available this message will be received using a
non-blocking receive. Afterwards, the communication thread will process the
message further (e.g. deserialization). If the sent data is related to a data-event in
the static data-flow dispatcher, the communication thread will trigger this event.
Thus the static data-flow dispatcher will dispatch the event as usual (like events
triggered after the computation). For the dispatcher it makes no difference if the
data came from actual computation inside a task or by communication.

4.3.3 DEFINING COMMUNICATION SCHEMES

For a user friendly communication interface in the task engine some things are still
missing. As for the static data-flow dispatcher, the user needs to decide what to
do with the data. The data-flow dispatcher allows to configure the event handlers
triggered for certain events upfront. The same is required for the communication.
Whenever new data is computed and ready for sending, a dispatcher needs to be
configured deciding where to send the data now or later.

The static data-flow dispatcher is capable of resolving the dispatch at compile-
time. Unfortunately, this is not possible for the communication dispatcher. The
number of used MPI processes is not fixed at compile-time and thus is neither
the distribution of work. To define a communication scheme, this however is
a requirement. Therefore, the static data-flow dispatcher was extended with a
communication dispatcher resulting in a hybrid (static and dynamic) data-flow
dispatcher. The hybrid data-flow dispatcher functions similar to the static data-
flow dispatcher. The only difference is that the communication dispatcher is called
as well, after the dispatching of static events has been called. The communication
scheme used for the communication dispatcher must be defined by the user upfront.
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Figure 4.6: This benchmark uses the large particle system encompassing 103 680 particles
and a multipole order of 15. It was conducted on 32 nodes of JURECA resulting in 768
cores in total.

4.4 PROOF OF CONCEPT BENCHMARK

For the evaluation of the proposed communication extension, a proof of concept
parallelization of the FMM was implemented. For the distributed computation the
particles are distributed equally among the compute nodes. The compute node is
responsible for computing the forces and potentials for the target particles only. For
the computation a full replication scheme was used reducing the communication.

The measurements have been conducted on JURECA [73]. Each node is
equipped with two Intel Xeon E5-2680 v3 processors [64] consisting of 12 cores
each. Additionally, the node is equipped with 128 GiB of main memory. The
nodes are connected by an InfiniBand network using a fat tree topology.

For the analysis the large particle system from Section 3.7 was used. It consists
of 103 680 homogeneously distributed particles of silica melt [7]. The benchmark
shown in Figure 4.6 was performed using up to 32 nodes resulting in a total
number of 768 cores. For the particle system this results in 130 particles per
core. For the measurement the computation was repeated 100 times and the
25 %-quartile was plotted (see Figure 4.6). The benchmarks exhibits a parallel
efficiency of 42.9 % for 16 nodes and a parallel efficiency of 25.6 % for 32 nodes.
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The minimum runtime for 16 nodes is 47 ms and for 32 nodes only 37 ms.

This approach shows a good scalability for a low number of nodes and only a
moderate scalability for 32 nodes. The reason for this is the simple paralleliza-
tion strategy. The full replication scheme works well for direct computation of
pairwise interactions but is not sophisticated enough for the computation using
the FMM. For the full replication, minor computational parts of the sequential
version dominate the parallel runtime and lower the scalability (e.g. P2M and
M2M). However, these limitation can be solved by implementing latency avoiding
parallelization schemes [35]. Especially, these drawbacks are due to the used
parallelization strategy and not due to the task engine or the communication ex-
tension.
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This work proposed and presented a task engine for intra-node parallelization of
latency-critical applications. It includes two unique components not available in
any other framework, the static data-flow dispatcher and the type-driven priority
scheduler. The static data-flow dispatcher can be configured at compile-time.
The advantage of this approach is, that the resolving of the actual dispatch calls
can be performed at compile-time, leading to the fastest dispatch possible. The
type-driven priority scheduler enables the prioritization of tasks along a critical
path of the parallelization. Compared to other solutions the advantage of the
type-driven approach is, that the priorities are deduced automatically from the
type of the task. This allows to provide an even faster insert method compared to
normal bucket-based priority queues.

While the actual task engine template library implementation is extensive,
its complexity can be fully hidden from the algorithm developer since only an
easy-to-use interface is exposed. As stated, all compile-time features increase
the performance, but more importantly the robustness and maintainability is
improved. A high parallel efficiency up to 95 % on 52 shared memory cores has
been achieved for a real world particle system. Even for a more challenging use
case with less computation a parallel efficiency of 87.7 % on 52 shared memory
cores can be reached. Such numbers are only possible because of the inherently
new design of the task engine itself. In contrast to classical divide and conquer
approaches in task engine like OpenMP tasks and its inherently attached limitation
of fix recursion depth for the creation of new tasks, the proposed task engine does
not suffer from any of these limitations. Currently executed tasks creating new
tasks are not responsible for them throughout there lifetime. The responsibility is
handed over to the scheduler after the creation and enqueuing of the new ready-
to-execute task. Additionally, the data-driven execution model never requires to
create and maintain the complete task graph upfront. Instead the much more
compact data-flow graph is used to generate the static data-flow dispatcher at
compile-time automatically.

For HPC applications, inter-node parallelization can not be ignored. Therefore,
the task engine was extended with a communication layer. Similar to the task
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engine the communication layer utilizes the separation of concerns between
algorithm developers and library developers. Message passing done with MPI is
not appropriate as a high level interface for algorithm developers. A minimal
message passing interface only relies on the data and the desired sending or
receiving counterpart. An easy-to-use high level interface was implemented
in the communication layer. This communication layer is capable of handling
arbitrary complex algorithmic data structure and provides a translation layer to
fit the requirements of the underlying communication library like MPI. Features
like type-traits and automatic serialization allow the swift translation towards
the underlying communication library. To this extend, no other C++ library
provides an easy-to-use high level interface. Additionally, intra-node and inter-
node parallelization have been combined, providing first concepts for task-based
communication using fine-grained tasks. Distributing tasks among different nodes
or using implicit communication has been knowingly rejected by design. Instead
tasks are only scheduled using node-local task engines and communication must
be done explicitly. Currently, work-stealing over node boundaries is not permitted.
The short execution times of a single time step favour a redistribution between
time steps to remove potential imbalances. Preliminary measurements of the
communication-enabled task engine show promising results. It was possible to
scale the total runtime of a hundred thousand particle system down to 37 ms using
768 cores in total.

In general, this work shows, that the proposed strict separation of concerns
works well also in HPC. The thereby introduced differentiation of two developer
roles makes it easy to exchange algorithmic details without modifying the low level
libraries of the task engine. On the other hand, this also allows a high flexibility
on the part of the library developer in case internals like locks, allocations or
scheduling strategies need to be modified. This has already been demonstrated
by allowing easy to exchange MCS-locks and standard mutex locks. The stark
distinction between algorithm developers and library developers relieves the
algorithm developer from adapting to new hardware features frequently. This
means, while the free launch from increasing CPU frequencies is still over [108],
a new one is already served.
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The presented communication-enabled task engine provides a strong foundation
for latency-critical HPC applications. With future HPC systems in mind further
enhancements are possible.

The overhead analysis revealed, that the creation of tasks requires frequent
concurrent allocations. However, the default glibc allocator shows a poor perfor-
mance for this use case. As an initial workaround this allocator was exchanged
during runtime by pre-loading jemalloc [38]. Allocations need further exploration
in case jemalloc is not allowed by the target code or other allocation strategies are
required. One possibility would be the use of pool allocators like Boost.Pool [25].
While the implementation of an efficient allocator is hard, the actual exchange of
the allocator in the task engine can be done with minor efforts.

Up until now, task objects in the task engine are not reused. Reusing these
objects will reduce the required allocations and thereby eliminate the cause of the
allocation in the first place. Again, this endeavor is not trivial, since the reuse must
be implemented for different task types separately. Additionally, NUMA must be
considered to avoid new overheads from falsely crossing NUMA borders using the
reuse pool. In case one would go one step further towards lock-free or wait-free
queues, reusing objects causes the ABA problem [55, pp. 223]. However, it is not
clear, if lock-free or wait-free implementations would improve the performance
significantly, since additional fine-grained synchronizations have to be introduced.

The fine-grained structure of the task engine exhibits several atomic synchro-
nizations. E.g., for the tracking of dependencies so called dependency counters are
utilized. Using a single atomic counter concurrently introduces stalls in execution
due to atomic read-modify-write operations. For concurrent counting with high
contention the concept of combining trees offers a better scalability [54].

For the communication layer other low level communication libraries need to
be explored. It is expected to gain more performance by circumventing known
MPI performance bottlenecks [29]. Additionally, other communication strategies
like active messages [37] or RDMA not available in MPI should be explored.

As mentioned before, certain parts of Flynn’s taxonomy have not been part of
this thesis. Therefore, further work is required to combine vectorization (SIMD)
with the task engine. This also benefits new architecture like GPUs since SIMD
and SIMT are two sides of the same coin.

All in all, the direction taken by using modern C++ and the differentiation of
developer roles shows very promising results and provides a valid baseline for
other latency-critical HPC applications.
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