000857998 001__ 857998
000857998 005__ 20240711085703.0
000857998 0247_ $$2doi$$a10.1016/j.ijhydene.2018.09.006
000857998 0247_ $$2ISSN$$a0360-3199
000857998 0247_ $$2ISSN$$a1879-3487
000857998 0247_ $$2WOS$$aWOS:000450539500058
000857998 037__ $$aFZJ-2018-06945
000857998 082__ $$a620
000857998 1001_ $$0P:(DE-Juel1)165870$$aJeong, Hyeondeok$$b0$$eCorresponding author
000857998 245__ $$aCoupling SOFCs to biomass gasification – The influence of phenol on cell degradation in simulated bio-syngas. Part II – Post-test analysis
000857998 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000857998 3367_ $$2DRIVER$$aarticle
000857998 3367_ $$2DataCite$$aOutput Types/Journal article
000857998 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1544796410_2055
000857998 3367_ $$2BibTeX$$aARTICLE
000857998 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000857998 3367_ $$00$$2EndNote$$aJournal Article
000857998 520__ $$aAnode-supported solid oxide fuel cells (SOFCs) with a state-of-the-art Ni/YSZ anode have been tested in simulated bio-syngas with controlled addition of phenol as a model molecule to study the influence of tars on the degradation of SOFCs operated with gasified biomass. The post-test analysis results of SOFCs are described after operation with different concentrations of phenol. The tests with pure syngas and up to 2 g/Nm3 of phenol show a relatively stable performance in a short-term period of 500 h, but the test with 8 g/Nm3 phenol shows drastic degradation. The microstructural changes of anode and support layers, phase changes, and carbon deposition were analyzed and discussed based on performance degradation and post-test analysis. No structural changes were found after tests with pure syngas. On the other hand, the addition of phenol causes macro- and micro-scale structural changes in the support, spreading from the fuel inlet. The support shows an erosion pattern and both Ni and YSZ were found as dust after the test. In these eroded areas, carbon fibers were observed by SEM and it was more pronounced with higher phenol content. There was no material phase transformation related to syngas or phenol, but surface carbon deposition was confirmed by Raman spectroscopy in the support and anode layers.
000857998 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000857998 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000857998 588__ $$aDataset connected to CrossRef
000857998 7001_ $$00000-0002-1980-2009$$aGeis, Michael$$b1
000857998 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b2
000857998 7001_ $$0P:(DE-Juel1)161444$$aLobe, Sandra$$b3$$ufzj
000857998 7001_ $$0P:(DE-HGF)0$$aHerrmann, Stephan$$b4
000857998 7001_ $$0P:(DE-HGF)0$$aFendt, Sebastian$$b5
000857998 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b6
000857998 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b7$$ufzj
000857998 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.09.006$$gVol. 43, no. 45, p. 20911 - 20920$$n45$$p20911 - 20920$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000857998 8564_ $$uhttps://juser.fz-juelich.de/record/857998/files/1-s2.0-S0360319918328143-main.pdf$$yRestricted
000857998 8564_ $$uhttps://juser.fz-juelich.de/record/857998/files/1-s2.0-S0360319918328143-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000857998 909CO $$ooai:juser.fz-juelich.de:857998$$pVDB
000857998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b2$$kFZJ
000857998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161444$$aForschungszentrum Jülich$$b3$$kFZJ
000857998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
000857998 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b7$$kFZJ
000857998 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000857998 9141_ $$y2018
000857998 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000857998 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000857998 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000857998 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000857998 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000857998 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000857998 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000857998 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000857998 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000857998 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000857998 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000857998 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000857998 920__ $$lyes
000857998 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000857998 980__ $$ajournal
000857998 980__ $$aVDB
000857998 980__ $$aI:(DE-Juel1)IEK-1-20101013
000857998 980__ $$aUNRESTRICTED
000857998 981__ $$aI:(DE-Juel1)IMD-2-20101013