000858015 001__ 858015
000858015 005__ 20220930130202.0
000858015 0247_ $$2doi$$a10.1016/j.cpc.2018.11.005
000858015 0247_ $$2ISSN$$a0010-4655
000858015 0247_ $$2ISSN$$a1386-9485
000858015 0247_ $$2ISSN$$a1879-2944
000858015 0247_ $$2Handle$$a2128/21589
000858015 0247_ $$2WOS$$aWOS:000459366400007
000858015 0247_ $$2altmetric$$aaltmetric:41453463
000858015 037__ $$aFZJ-2018-06959
000858015 082__ $$a530
000858015 1001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b0
000858015 245__ $$aMassively parallel quantum computer simulator, eleven years later
000858015 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2019
000858015 3367_ $$2DRIVER$$aarticle
000858015 3367_ $$2DataCite$$aOutput Types/Journal article
000858015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1605868814_3626
000858015 3367_ $$2BibTeX$$aARTICLE
000858015 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858015 3367_ $$00$$2EndNote$$aJournal Article
000858015 520__ $$aA revised version of the massively parallel simulator of a universal quantum computer, described in this journal eleven years ago, is used to benchmark various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computers with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM BlueGene/Q, and on Intel Xeon based clusters, implying that the combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of executing simple quantum circuits and Shor’s factorization algorithm on quantum computers containing up to 48 qubits are presented.
000858015 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000858015 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000858015 536__ $$0G:(DE-Juel1)jjsc09_20180501$$aManipulation and dynamics of quantum spin systems (jjsc09_20180501)$$cjjsc09_20180501$$fManipulation and dynamics of quantum spin systems$$x2
000858015 588__ $$aDataset connected to CrossRef
000858015 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000858015 7001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b2
000858015 7001_ $$0P:(DE-Juel1)167543$$aNocon, Madita$$b3$$ufzj
000858015 7001_ $$0P:(DE-HGF)0$$aYoshioka, Naoki$$b4
000858015 7001_ $$0P:(DE-HGF)0$$aIto, Nobuyasu$$b5
000858015 7001_ $$0P:(DE-HGF)0$$aYuan, Shengjun$$b6$$eCorresponding author
000858015 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b7$$eCorresponding author
000858015 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2018.11.005$$gp. S0010465518303977$$p47-61$$tComputer physics communications$$v237$$x0010-4655$$y2019
000858015 8564_ $$uhttps://juser.fz-juelich.de/record/858015/files/De-Raedt-et-al-Comp-Phys-Comm-Invoice-W1481512.pdf
000858015 8564_ $$uhttps://juser.fz-juelich.de/record/858015/files/1-s2.0-S0010465518303977-main.pdf$$yOpenAccess
000858015 8564_ $$uhttps://juser.fz-juelich.de/record/858015/files/De-Raedt-et-al-Comp-Phys-Comm-Invoice-W1481512.pdf?subformat=pdfa$$xpdfa
000858015 8564_ $$uhttps://juser.fz-juelich.de/record/858015/files/1-s2.0-S0010465518303977-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858015 8767_ $$8W1481512$$92018-11-30$$d2018-12-03$$eHybrid-OA$$jZahlung erfolgt
000858015 909CO $$ooai:juser.fz-juelich.de:858015$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000858015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000858015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b2$$kFZJ
000858015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b3$$kFZJ
000858015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b7$$kFZJ
000858015 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000858015 9141_ $$y2019
000858015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858015 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858015 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000858015 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMPUT PHYS COMMUN : 2017
000858015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858015 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858015 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858015 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858015 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858015 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858015 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858015 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858015 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858015 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858015 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000858015 980__ $$ajournal
000858015 980__ $$aVDB
000858015 980__ $$aI:(DE-Juel1)JSC-20090406
000858015 980__ $$aI:(DE-82)080012_20140620
000858015 980__ $$aAPC
000858015 980__ $$aUNRESTRICTED
000858015 9801_ $$aAPC
000858015 9801_ $$aFullTexts