001     858015
005     20220930130202.0
024 7 _ |a 10.1016/j.cpc.2018.11.005
|2 doi
024 7 _ |a 0010-4655
|2 ISSN
024 7 _ |a 1386-9485
|2 ISSN
024 7 _ |a 1879-2944
|2 ISSN
024 7 _ |a 2128/21589
|2 Handle
024 7 _ |a WOS:000459366400007
|2 WOS
024 7 _ |a altmetric:41453463
|2 altmetric
037 _ _ |a FZJ-2018-06959
082 _ _ |a 530
100 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Massively parallel quantum computer simulator, eleven years later
260 _ _ |a Amsterdam
|c 2019
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605868814_3626
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A revised version of the massively parallel simulator of a universal quantum computer, described in this journal eleven years ago, is used to benchmark various gate-based quantum algorithms on some of the most powerful supercomputers that exist today. Adaptive encoding of the wave function reduces the memory requirement by a factor of eight, making it possible to simulate universal quantum computers with up to 48 qubits on the Sunway TaihuLight and on the K computer. The simulator exhibits close-to-ideal weak-scaling behavior on the Sunway TaihuLight, on the K computer, on an IBM BlueGene/Q, and on Intel Xeon based clusters, implying that the combination of parallelization and hardware can track the exponential scaling due to the increasing number of qubits. Results of executing simple quantum circuits and Shor’s factorization algorithm on quantum computers containing up to 48 qubits are presented.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
536 _ _ |a Manipulation and dynamics of quantum spin systems (jjsc09_20180501)
|0 G:(DE-Juel1)jjsc09_20180501
|c jjsc09_20180501
|f Manipulation and dynamics of quantum spin systems
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 1
|u fzj
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 2
700 1 _ |a Nocon, Madita
|0 P:(DE-Juel1)167543
|b 3
|u fzj
700 1 _ |a Yoshioka, Naoki
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ito, Nobuyasu
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yuan, Shengjun
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 7
|e Corresponding author
773 _ _ |a 10.1016/j.cpc.2018.11.005
|g p. S0010465518303977
|0 PERI:(DE-600)1466511-6
|p 47-61
|t Computer physics communications
|v 237
|y 2019
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/858015/files/De-Raedt-et-al-Comp-Phys-Comm-Invoice-W1481512.pdf
856 4 _ |u https://juser.fz-juelich.de/record/858015/files/1-s2.0-S0010465518303977-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858015/files/De-Raedt-et-al-Comp-Phys-Comm-Invoice-W1481512.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/858015/files/1-s2.0-S0010465518303977-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:858015
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21