001     858021
005     20240711113839.0
024 7 _ |a 10.1088/1741-4326/aaa98e
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000424504400002
|2 WOS
024 7 _ |a altmetric:32776044
|2 altmetric
037 _ _ |a FZJ-2018-06965
082 _ _ |a 620
100 1 _ |a Liu, Shaocheng
|0 P:(DE-Juel1)166375
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Observations of the effects of magnetic topology on the SOL characteristics of an electromagnetic coherent mode in the first experimental campaign of W7-X
260 _ _ |a Vienna
|c 2018
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1547135309_3111
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Turbulence is considered to play an important role in the edge cross field heat and particle transport in fusion devices. Scrape-off layer (SOL) turbulence characteristics were measured by the combined probe mounted on the multi-purpose manipulator during the first experimental campaign of W7-X. An electromagnetic coherent mode (EMCM) at 7 kHz has been observed by multiple diagnostics in both the plasma core and the SOL and exhibits a strong dependence of the magnetic topology. As demonstrated by the measurements of the combined probe, the EMCM starts to appear at a radius of R  =  6.15 m along the path of probe measurement and this location is shifted inwards in higher iota configurations. It propagates along the direction of electron diamagnetic drift in the far SOL with a poloidal velocity about 0.6 km s−1 while it turns to the opposite direction gradually in the near SOL in the laboratory frame, but keeps a velocity of about 0.6–0.7 km s−1 along the direction of electron diamagnetic drift in the plasma frame. This mode can be induced by raising the ECRH heating power in similar discharge conditions, which is probably linked to the gradient of electron temperature and pressure. The EMCM is enhanced significantly in the edge magnetic island with long connection length where the EMCM can grow up due to the long particle confinement time.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liang, Yunfeng
|0 P:(DE-Juel1)130088
|b 1
700 1 _ |a Drews, P.
|0 P:(DE-Juel1)162257
|b 2
700 1 _ |a Krämer-Flecken, A.
|0 P:(DE-Juel1)130075
|b 3
700 1 _ |a Han, X.
|0 P:(DE-Juel1)171363
|b 4
700 1 _ |a Nicolai, D.
|0 P:(DE-Juel1)130112
|b 5
700 1 _ |a Satheeswaran, G.
|0 P:(DE-Juel1)130135
|b 6
700 1 _ |a Wang, N. C.
|0 P:(DE-Juel1)165601
|b 7
700 1 _ |a Cai, J. Q.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Charl, A.
|0 P:(DE-Juel1)129982
|b 9
700 1 _ |a Cosfeld, J.
|0 P:(DE-Juel1)167468
|b 10
700 1 _ |a Fuchert, G.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gao, Yu
|0 P:(DE-Juel1)161317
|b 12
700 1 _ |a Geiger, J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Grulke, O.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Henkel, M.
|0 P:(DE-Juel1)168196
|b 15
700 1 _ |a Hirsch, M.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hoefel, U.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Hollfeld, K. P.
|0 P:(DE-Juel1)133683
|b 18
700 1 _ |a Höschen, D.
|0 P:(DE-Juel1)166541
|b 19
700 1 _ |a Killer, C.
|0 0000-0001-7747-3066
|b 20
700 1 _ |a Knieps, A.
|0 P:(DE-Juel1)173792
|b 21
700 1 _ |a König, R.
|0 P:(DE-Juel1)159297
|b 22
700 1 _ |a Neubauer, O.
|0 P:(DE-Juel1)130109
|b 23
700 1 _ |a Pasch, E.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Rahbarnia, K.
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Rack, M.
|0 P:(DE-Juel1)145407
|b 26
700 1 _ |a Sandri, N.
|0 P:(DE-Juel1)130134
|b 27
700 1 _ |a Sereda, S.
|0 P:(DE-Juel1)168195
|b 28
700 1 _ |a Schweer, B.
|0 P:(DE-Juel1)130154
|b 29
700 1 _ |a Wang, Erhui
|0 P:(DE-Juel1)168296
|b 30
700 1 _ |a Wei, Yanling
|0 P:(DE-Juel1)168343
|b 31
700 1 _ |a Weir, G.
|0 0000-0002-2370-409X
|b 32
700 1 _ |a Windisch, T.
|0 P:(DE-HGF)0
|b 33
773 _ _ |a 10.1088/1741-4326/aaa98e
|g Vol. 58, no. 4, p. 046002 -
|0 PERI:(DE-600)2037980-8
|n 4
|p 046002 -
|t Nuclear fusion
|v 58
|y 2018
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/858021/files/Liu_2018_Nucl._Fusion_58_046002-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/858021/files/Liu_2018_Nucl._Fusion_58_046002-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:858021
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130088
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162257
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130075
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)171363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130112
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129982
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)167468
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)161317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)168196
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)133683
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)166541
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)173792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)159297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)130109
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)145407
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 27
|6 P:(DE-Juel1)130134
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)168195
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 29
|6 P:(DE-Juel1)130154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 30
|6 P:(DE-Juel1)168296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 31
|6 P:(DE-Juel1)168343
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21