001     858040
005     20240619083548.0
024 7 _ |a 10.1088/1361-6463/aaf40c
|2 doi
024 7 _ |a 0022-3727
|2 ISSN
024 7 _ |a 0262-8171
|2 ISSN
024 7 _ |a 0508-3443
|2 ISSN
024 7 _ |a 1361-6463
|2 ISSN
024 7 _ |a 2057-7656
|2 ISSN
024 7 _ |a 2128/21065
|2 Handle
024 7 _ |a WOS:000453285500002
|2 WOS
024 7 _ |a altmetric:52119411
|2 altmetric
037 _ _ |a FZJ-2018-06984
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Lang, Christian
|0 P:(DE-Juel1)168105
|b 0
|e Corresponding author
245 _ _ |a A quest for shear banding in ideal and non ideal colloidal rods
260 _ _ |a Bristol
|c 2019
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550837840_6684
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We assess the possibility of shear banding of semidilute rod-like colloidal suspensions under steady shear flow very close to the isotropic-nematic spinodal, using a combination of rheology, small angle neutron scattering, and laser Doppler velocimetry. Model systems are employed which allow for a length and stiffness variation of the particles. The rheological signature reveals that these systems are strongly shear thinning at moderate shear rates. It is shown that the longest and most flexible rods undergo the strongest shear thinning and have the greatest potential to form shear bands. Although we find a small but significant gradient of the orientational order parameter throughout the gap of the shear cell, no shear banding transition is tractable in the region of intermediate shear rates. At very low shear rates, gradient banding and wall slip occur simultaneously, but the shear bands are not stable over time.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a DiStruc - Directed Colloidal Structure at the Meso-Scale (641839)
|0 G:(EU-Grant)641839
|c 641839
|f H2020-MSCA-ITN-2014
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Porcar, Lionel
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kriegs, Hartmut
|0 P:(DE-Juel1)130773
|b 2
|u fzj
700 1 _ |a Lettinga, P.
|0 P:(DE-Juel1)130797
|b 3
|u fzj
773 _ _ |a 10.1088/1361-6463/aaf40c
|0 PERI:(DE-600)1472948-9
|n 7
|p -
|t Journal of physics / D Applied physics D
|v 52
|y 2019
|x 1361-6463
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/8109630_0%20%28002%29.pdf
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/8116740.pdf
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/8109630_0%20%28002%29.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/Lang_2019_J._Phys._D__Appl._Phys._52_074003.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/Lang_2019_J._Phys._D__Appl._Phys._52_074003.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858040/files/8116740.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:858040
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168105
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130773
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130797
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS D APPL PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21