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Abstract 25 

Soil-crop models are used to simulate ecological processes from the field to the regional 26 

scale. Main inputs are soil and climate data in order to simulate model response variables such 27 

as crop yield. We investigate the effect of changing the resolution of input data on simulated 28 

crop yields at a regional scale using up to ten dynamic crop models. For these models we 29 

compared the effects of spatial input data aggregation for wheat and maize yield of two 30 

regions with contrasting climate conditions (1) Tuscany (Italy, Mediterranean climate) and (2) 31 

North Rhine Westphalia (NRW, Germany, temperate climate). Soil and climate data of 1 km 32 

resolution were aggregated to resolutions of 10, 25, 50, and 100 km by selecting the dominant 33 

soil class (and corresponding soil properties) and by arithmetic averaging, respectively. 34 

Differences in yield simulated at coarser resolutions from the yields simulated at 1 km 35 

resolution were calculated to quantify the effect of the aggregation of the input data (soil and 36 

climate data) on simulation results. 37 

The mean yield difference (bias) at the regional level was positive due to the upscaling of 38 

productive dominant soil(s) to coarser resolution. In both regions and for both crops, 39 

aggregation effects (i.e. errors in simulation of crop yields at coarser spatial resolution) due to 40 

the combined aggregation of soil and climate input data increased with decreasing resolution, 41 

whereby the aggregation error for Tuscany was larger than for North Rhine Westphalia 42 

(NRW). The average absolute percentage yield differences between grid cell yields at the 43 

coarsest resolution (100 km) compared to the finest resolution (1 km)  were by about 20 to 44 

30% for Tuscany and less than 15 and 20% for NRW for winter wheat and silage maize, 45 

respectively.  46 

In the Mediterranean area, the prediction errors of the simulated yields could reach up to 60 % 47 

when looking at individual crop model simulations. Additionally, aggregating soil data caused 48 

larger aggregation errors in both regions than aggregating climate data. 49 



Those results suggest that a higher spatial resolution of climate and especially of soil data 50 

input are necessary in Mediterranean areas than in temperate humid regions of central Europe 51 

in order to predict reliable regional yield estimations with crop models. 52 

For generalization of these outcomes, further investigations in other sub-humid or semi-arid 53 

regions will be necessary. 54 

Keywords: Data resolution, Scale, Modelling, Regional yield, Climate, Soil 55 

1. Introduction 56 

Crop models were developed based on the understanding and conceptualisation of the effects 57 

of agro-climatic conditions on field processes (e.g. soil water movement, nutrient cycle, root 58 

water and nutrient uptake). They are applied to simulate crop yield under different agro-59 

climatic and management conditions and to assess climate change impacts on crop yield. The 60 

agro-climatic conditions in the field along with crop-management practices are represented by 61 

measured soil and climate data, whereby these soil and climate data are the main inputs for 62 

crop models that drive the processes implemented in the model. Most crop growth models 63 

were developed at the plot or field scale (F. Ewert et al., 2015), where the input data can be 64 

measured to initialize and drive the models.  65 

Crop models have been generally validated and applied for multiple locations at the plot or 66 

field scale (Hansen et al., 2012; Liang et al., 2016; Singh et al., 2013). They can moreover be 67 

applied for multiple grid cells of different resolutions to cover the entire area of interest 68 

(region to country level). In that case, the spatial variation within the area is defined by 69 

different characterization of the grid cells in terms of agro-climatic conditions (such as soil 70 

and climate input data) representative of the area covered by the grid. Therefore, these models 71 

are run beyond the plot or field scales, where they have been developed at, to predict yields at 72 

regional to global scales with various grid resolutions using spatially aggregated input data 73 



are were used (Rosenzweig et al., 2014; Rosenzweig and Iglesias, 1998; Rosenzweig and 74 

Parry, 1994). For example, crop models are applied using climate change data generated by 75 

global circulation models (GCMs) at a scale of e.g. half degree (~50 to 50 km) to assess 76 

climate change impacts on crops and the environment (Donatelli et al., 2015) and in order to 77 

design comprehensive adaptation strategies such as optimization of sowing date from regional 78 

to global scales. When crop models are applied at these large scales, input data (such as soil 79 

or climate data) are estimated from smaller scale measurements by data aggregation to the 80 

resolution of the grid-cell simulation. The aggregation of input data from finer resolution to 81 

coarser resolution inevitably will lead to losses of spatial variability of the dataset, whereby 82 

the extent of information loss greatly depends on the aggregation methods (Ewert et al., 83 

2011).  84 

Climate input data from two relatively small regions in Northern and Central Europe 85 

aggregated to different resolutions was used to run a range of crop models in Angulo et al. 86 

(2013) in order to study the characteristics and distribution of the response variable (i.e., crop 87 

yield) as a result of the input data aggregation (climate data). Furthermore, soil data at 88 

different resolutions were used to simulate crop yield and analyze yield distribution from two 89 

contrasting sites in Angulo et al. (2014). These studies showed that the impact of input data 90 

(soil and climate respectively) aggregation on simulated yield distribution were not different 91 

within models despite that the simulated spatial yield distributions were different for the 92 

various models. The authors proposed thus to use a multi-model ensemble approach (i.e., 93 

average of the output of all models) to analyze input data aggregation impact on regional crop 94 

yield simulation. A multi-model ensemble approach was also used by Zhao et al. (2015a) who 95 

quantified the climate data aggregation error for regional simulations of several model output 96 

variables such as yield, evapotranspiration, and water use efficiency in North Rhine-97 

Westphalia (NRW) in Central Europe. In the latter study, climatic data were aggregated at 98 



different resolutions (10, 25, 50, and 100 km). They found that climate data aggregation error 99 

was highest for simulated crop yield compared to crop evapotranspiration or water use 100 

efficiency, but was below 10% in all cases. In the same region, the characteristics (inter-101 

annual variability and spatial variance) of climatic data aggregated to coarser resolution were 102 

compared to the simulated regional mean crop yield (winter wheat and silage maize) across 103 

various crop models and years, whereby the bias was up to 0.2 t ha-1 (< 3 %) due to the 104 

aggregation of climate data (Hoffmann et al., 2015). The aggregation error for simulated crop 105 

yield was significantly increasing for decreasing resolution of the climate data. The 106 

application of simultaneous aggregation of soil and climate data to simulate regional crop 107 

yield by different crop models were further investigated by Hoffmann et al. ( 2016). The 108 

results showed, that the aggregation errors were amplified with decreasing resolution of soil 109 

and climate data input compared to the aggregation error made by aggregating only one input 110 

variable. 111 

 The study of the aggregation effects of soil and climate data on regional crop yield 112 

simulations has so far been focused only on temperate, humid region, namely North-Rhine 113 

Westphalia (NRW) in Germany (Hoffmann et al., 2017, 2016; Zhao et al., 2015a) or a boreal 114 

region (Angulo et al., 2014, 2013) and no such study has been performed in a Mediterranean 115 

climate where drier climatic conditions may increase the effect of climate data aggregation. 116 

Additionally, no study has been reported so far to compare the aggregation effect between 117 

regions with different soil and climatic conditions. In general, the climate in the 118 

Mediterranean region is characterized by higher average air temperature during the crop 119 

growing season compared to temperate regions and less precipitation either at the end of the 120 

growing season in the case of winter crops, or during the growing season in the case of spring 121 

crops. In addition, the soils in the Mediterranean region selected show higher spatial 122 

variability with more soils having lower available water capacity due to either coarser soil 123 

texture or lower soil depth with higher gravel or stone content. Therefore, periods of water 124 



shortage for rainfed crops are more frequent. Under water-limited production conditions, the 125 

spatial aggregation of soil type in combination with aggregation of climate variables, is 126 

expected to have a stronger impact on simulated crop yield compared to temperate, humid 127 

regions.  128 

Therefore, this study compares aggregation effects of soil and climate data on regional yield 129 

simulation for two contrasting climatic regions for water-limited production conditions based 130 

on the hypotheses that (1) input data aggregation affects regional yield simulations more in 131 

Mediterranean than in temperate region and (2) input data aggregation error is higher for 132 

spring crops (silage maize) compared to winter crops (winter wheat). 133 

2 Material and Methods  134 

2.1 Study regions 135 

The aggregation effects of input data (soil and climate) on crop yield simulations were 136 

compared between a region under temperate, humid climate conditions North Rhine 137 

Westphalia (NRW, 51° 46' 4.1'' N and 7° 26' 38.4'' E, Germany) and a region under 138 

Mediterranean climate conditions, Tuscany (TUS, 43° 41' 14.1 '' N and 10° 29' 10.3'' E , 139 

Italy). Figure 1 presents the geographical location of the study regions. A summary of  the 140 

main climatic conditions  for these two study  sites are presented in Table 1.  141 

[Table 1 Here] 142 

The long-term annual means of selected climatic variables were calculated based on the 143 

respective climate data from 1995 to 2011. The annual mean temperature for NRW and TUS 144 

are 9.6 o C and 16.1 o C, respectively. The annual mean precipitation sums are 821 mm y-1 for 145 

NRW and 949.4 mm y-1 Tuscany.  146 

[Figure 1 Here] 147 



2.2 Preparation of model input data 148 

2.2.1 Soil data 149 

 NRW 150 

The soil data at 1 km resolution for NRW, Germany was originally already aggregated by 151 

dominant soil type from  approximately 300 m resolution  to grid cells of 1 km resolution 152 

(Hoffmann et al., 2016). The soil data source for NRW and the methods to derive several soil 153 

properties including topsoil organic carbon, soil texture, soil bulk density, and soil albedo are 154 

explained in Hoffmann et al, (2016). In a second step the soil data at 1 km resolution was 155 

aggregated to coarser resolution by dominant soil type from the 1 km resolution to 10, 25, 50, 156 

100 km as well as to a NRW mean (SNRW). The results of the soil data aggregated from 1 km 157 

resolution to 100 km resolution for NRW is shown in Fig. 2. The dominant soil type for NRW 158 

(SNRW) was a Cambisol.  159 

[Figure 2 Here] 160 

 Tuscany  161 

The soil distribution including soil physical and chemical properties were obtained from the 162 

data base of Gardin and Vinci (2006). The database contains soil layer-wise information about 163 

soil layer thickness, soil texture, gravel and soil organic carbon content. Additional soil 164 

properties for each layer (such as soil hydraulic properties) required as input to different crop 165 

models were prepared based on soil texture and gravel content information using pedotransfer 166 

functions (PTF). In Tuscany, information on soil classification at the soil order level was not 167 

available. Therefore, the dominant soil texture in the topsoil at the resolution of 1 km was 168 

used to aggregate the soil properties to the resolution of coarser grids (10 – 100 km). The soil 169 

data at a coarser resolution of 10, 25, 50, and 100 km were prepared by selecting the dominant 170 

soil texture among the 1 km soil grids (Fig. 3). 171 



[Figure 3 Here] 172 

The dominant soil type aggregated at the regional level for Tuscany the dominant soil texture 173 

class is loam. The associated soil properties for dominant soils at the regional level such as 174 

soil depth, bulk density, wilting point, and field capacity are presented in the supplementary 175 

material (Table S1). 176 

The variability of soil properties of top soil layer for NRW and TUS at 1 km resolution is 177 

shown in Table 2 and the properties for other soil layers are presented in the supplementary 178 

material (Table S2). The soil database with similar soil properties among others at the 179 

different level of aggregation were used as soil input data to the crop models used in the study 180 

presented. 181 

The soil depth of the most dominant soil in NRW is about 2.3 m (range 0.1 - 2.3 m for 182 

different soil layers in 1 km grid cells), while for Tuscany it is only 1.36 m (range in 0.18 - 183 

1.5 m for different soil layers in 1 km grid cells). The field capacity of the first soil layer for 184 

the dominant soils are 0.36 and 0.23 m3 m-3 for NRW and Tuscany, respectively. Other soil 185 

parameters required to simulate the crop yields are provided in Hoffmann et al. (2016) mainly 186 

for NRW region and are shown in the supplementary material (Table S2). 187 

[Table 2 Here] 188 

2.2.2 Climate data 189 

 NRW 190 

The climate data set for NRW at 1 km resolution include daily time series of minimum, mean 191 

and maximum air temperature, precipitation, global radiation, wind speed, and relative 192 

humidity for the period 1982 to 2011 and was established by interpolation of measured 193 

climate variables at 280 weather stations provided by the German Meteorological Services 194 

(DWD). All climate variables were aggregated to coarser resolutions from 1 km resolution 195 



data by arithmetic averaging. The climate data source and the aggregation process to coarser 196 

resolution for NRW are explained in detail in Hoffmann et al. (2016). 197 

 Tuscany 198 

The daily meteorological data for Tuscany at 1 km resolution from 1995 to 2013 were 199 

provided by the Lamma Consortium of Tuscany Region (http://www.lamma.rete.toscana.it/) 200 

This dataset includes gridded daily records of minimum, mean and maximum temperature, 201 

precipitation, solar radiation, wind speed and relative humidity (about 22,000 grids cells over 202 

Tuscany region), which were calculated from the local meteorological network. In particular, 203 

daily maximum and minimum temperatures and total daily-cumulated precipitation, collected 204 

from 94 and 159 stations, were interpolated according to the DAYMET procedure (Thornton 205 

et al., 1997) to produce the relevant daily digital maps as described in Chiesi et al. (2007). 206 

These maps were in turn used as input of the MT-CLIM procedure to produce additional daily 207 

maps of solar radiation based on the algorithm presented in Thornton et al. (2000), which was 208 

specifically calibrated for the Tuscany region (calibration not published). Relative humidity 209 

was calculated by using daily minimum and mean air temperature as explain in Allen et al. 210 

(1998). Daily data of wind speed at a height of 2 meters were obtained by interpolating the 211 

data from 45 weather stations using a nearest neighbour approach. 212 

The meteorological data at 1 km resolution were aggregated similar to the approach applied 213 

on NRW to coarser resolution of 10, 25, 50, and 100 km by averaging all grid cells at 1 km 214 

included within the respective coarser resolution. The spatial variability of average minimum, 215 

mean, and maximum temperature for the period from 1995 to 2013 aggregated across 216 

resolutions is shown in Fig 4.  217 

The daily climate variables for each year during the growing period of the respective crop 218 

where averaged from 1995 to 2011 and are shown in Table 3. The mean temperature during 219 

the growing season for silage maize in NRW and Tuscany are respectively 16 and 22oC, while 220 



the average of mean temperature during the growing period of wheat are 8oC for NRW and 221 

12oC for Tuscany. The sum of precipitation during growing season of maize in NRW and 222 

Tuscany are similar with the approximate value of 350 mm, while the precipitation sum 223 

during growing season of winter wheat in NRW is about 632 and 591 mm for Tuscany. The 224 

climate water balance (cwb: ET0−Precipitation, mm) for respective crop growing season and 225 

regions is higher for Tuscany than for NRW. The summary statistic of the climatic variables 226 

for each region for the respective crop during growing period is presented in Table 3 and the 227 

soil properties of the dominant soil type in each region is presented in supplementary 228 

material(Table S2). 229 

[Figure 4 Here] 230 

[Table 3 Here] 231 

2.3 Model setup 232 

The model ensemble consisted of a total of nine field scale crop models (AgroC, CENTURY, 233 

CoupModel, DailyDayCent, EPIC, HERMES, MONICA, SIMPLACE<LINTUL5;SLIM>, 234 

STICS), which have been frequently used in climate change impact studies at field to regional 235 

scale (Table 4). The respective abbreviations of the models in figures tables are AGRC, 236 

CENT, COUP, DayC, EPIC, HERM, MONI, LINT, and STIC. All models were run for both 237 

crops (wheat and maize) except COUP, which was only run for wheat. The model runs were 238 

constrained by the climate and soil properties as explained in 2.2.1 and 2.2.2 and management 239 

rules (see below). In NRW all models were run constraining the maximum root depth to the 240 

maximum soil depth (unrestricted root growth) and for Tuscany CENT, DayC, EPIC, LINT, 241 

and CENT were run for the same rooting conditions.  242 

 243 

[Table 4 Here] 244 



Aggregated soil, climate, and crop management data were used for the crop model ensemble 245 

to simulate the yield of silage maize and winter wheat. The crop management data with 246 

respect to tillage, sowing, and fertilizer application (timing and amount) were fixed for both 247 

regions, while the date of harvest for each crop was either simulated or observed harvest dates 248 

were used depending on the requirements of the individual models. The detailed crop 249 

management data for winter wheat and silage maize in the two regions are shown in Table 5 250 

and 6. 251 

[Table 5 Here] 252 

[Table 6 Here] 253 

The crop models were calibrated at 1 km resolution grid cells by using one typical sowing and 254 

one typical harvest date for each crop to match the regional average of observed yields for 255 

NRW and Tuscany. The calibration procedure for NRW is further explained in Hoffmann et 256 

al., (2016). The grid cells in the respective resolutions are used as simulation points for the 257 

models. For example, 1 km resolution of Tuscany consists of 22,000 grids cells and each grid 258 

cell is considered as simulation point for yield simulation at 1 km resolution. The yield for 259 

winter wheat refers to grain yield, while for the silage maize it refers to the aboveground 260 

biomass. Then, all crop models were run for respective crops and different combinations of 261 

soil and climate data resolutions as listed in Table 7. 262 

[Table 7 Here] 263 

The combination of input data at different aggregation levels is abbreviated as SyxCz (where 264 

Sy is the soil data at resolution y and Cz is the climate data at resolution z). Altogether, 15 265 

combinations of spatial resolutions of soil and climate input data were used to simulate silage 266 

maize and winter wheat for both regions. The modelled output i.e. yield from each individual 267 

crop model was summarized for each soil and climate combination to calculate the model 268 



ensemble mean and the impacts of soil and climate data aggregation were further analyzed for 269 

the simulation results based on this model ensemble mean. The general modelling framework 270 

used in this study is presented in Fig. 5. 271 

[Figure 5 Here] 272 

2.4 Calculation of the aggregation errors 273 

In general, the aggregation errors were calculated as the differences in model output at a given 274 

resolution (e.g., 10, 25, 50, 100, Tus or NRW) with respect to the model outputs generated at 275 

the highest resolution of 1 km. The error indicators were calculated from the following 276 

equations. The effects of aggregation of soil and climate input data on the yield simulations of 277 

the model ensemble mean are quantified for each spatial resolution. Equation 1 quantifies the 278 

aggregation error relative to the grid cells i.e. pixel level of the finest 1 km resolution, while 279 

the other equations quantify the aggregation error at the regional level (average of all N grid 280 

cells at 1 km resolution). 281 

������ =  
��
� − ������� � ∗ 100                                                                                                         (1) 282 

where, AbsPDj is the absolute percentage yield difference in simulated yield relative to 283 

gridcell j, with YFj is the simulated yield of the respective grid cell j at 1 km resolution and 284 

YCj is the simulated yield in the grid of a coarser resolution that includes grid cell j.  285 

The mean difference at the regional scale (MD) is then calculated as the average of the 286 

difference between the yield YCi simulated at coarser resolution disaggregated to 1 km 287 

resolution and corresponding to the jth grid cell and the yield YFj simulated in grid cell j of 1 288 

km resolution: 289 



�� = ��� ∗ �� �
� − ���
�

��� �                                                                                                           (2) 290 

The mean absolute difference (AMD) is the equivalent to the mean difference (MD) except 291 

that the absolute value of the yield differences between coarser resolution and the 1 km 292 

resolution is used: 293 

 294 

��� = ��� ∗ ����
� − �����
��� �                                                                                                      (3) 295 

� !�� is the average yield at 1 km resolution, where N is the number of grid cells at 1 km 296 

resolution, and rAAD is the average absolute yield deviation normalized to the average yield 297 

at 1 km resolution. 298 

� !�� = ��� ∗ �� ���
�

��� �                                                                                                                 (4) 299 

#��� = ��� ∗ $∑ ��
� − �������� & ∗ 100� !��                                                                                          (5) 300 

 301 

3 Results 302 

3.1 Spatial pattern of crop yield simulations in NRW and Tuscany  303 

3.1.1 Silage maize yield simulation in NRW and Tuscany 304 

The ensemble mean for silage maize across all crop models simulated for different 305 

combinations of aggregated soil and climate data under water limited conditions shows a 306 



relatively higher  silage maize yield simulated for NRW (Fig. 6A) as compared to Tuscany 307 

(Fig. 6B). Additionally, the spatial variability of silage maize yields are highest when both 308 

soil and climate input data at the finest resolution (1 km) were used (S1xC1 in NRW and 309 

Tuscany). For both regions, only small changes in the spatial yield patterns are detectable, 310 

when the finest soil input data resolution (S1 = soil at 1 km) is combined with average climate 311 

input data over the entire region (CNRW or CTus) (Fig. 6, 1stcolumn for each panel i.e. S1xCNRW 312 

and S1xCTUS). On the other hand, combining dominant soil conditions (SNRW or STUS) with 313 

high resolution climate data (C1 = climate at 1 km) leads to pronounced differences in the 314 

predicted silage maize yield compared to the finest resolution S1xC1. The overall range of 315 

silage maize yield for NRW is from 10 to 18 t ha-1, while for Tuscany it is from 5 to 18 t ha-1. 316 

[Figure 6 Here] 317 

3.1.2  Winter wheat simulation in NRW and Tuscany 318 

The average crop yields for winter wheat in NRW are much higher than in Tuscany regardless 319 

of the soil-climate input data combination (Fig. 7). Yield for winter wheat in NRW ranges 320 

from 4 to 10 t ha-1 while for Tuscany it is between 0 and 6 t ha-1. The spatial variability of the 321 

ensemble mean yield for (winter) wheat across all models is similar to the variability of the 322 

ensemble mean of silage maize yield. In both NRW and Tuscany, the spatial variability of the 323 

winter wheat yield is highest when the finest resolution of climate and soil input (S1xC1) is 324 

used. In Tuscany, the spatial variability of simulated winter wheat yields using the finest 325 

resolution of soil and climate input data (S1xC1) is comparable to the spatial variability of 326 

yields simulated with the combination of finest soil resolution and average regional climate 327 

(S1xCTUS) that exhibit slightly higher values in the northern  part of the region. The yield 328 

pattern in which the finest resolutions of soil and climate input is used (S1xC1 i.e, Fig. 7 1st 329 

column of panel B) is comparable with yields produced with the finest climate resolution and 330 

the dominant soil type (STUSxC1 i.e, Fig. 7, 1st column of Panel B). This is in contrast with the 331 



spatial variability of winter wheat yields in NRW, where the simulated yields based on the 332 

combination of finest climate input resolution with the dominant soil type exhibited a much 333 

lower spatial variability as compared to the yield simulated with the highest resolution of both 334 

soil and climate input (S1xC1 i.e,Fig. 7, 1st column in panel A). 335 

[Figure 7 Here] 336 

Thus, yield simulations for silage maize and winter wheat at finest resolution of soil and 337 

climate input at 1 km resolution (S1xC1 i.e. Fig. 6 and 7) have the highest spatial variability 338 

compared to all other soil and climate input data combinations. With aggregation of soil and 339 

climate input data the spatial variability of simulated crop yields decreases (Fig. 6 and 7). 340 

However, in the case of winter wheat, when only climate input data is aggregated and 341 

combined with the dominant soil type (3rd row, Fig. 7) the spatial variability of simulated 342 

yields is much lower in all resolutions. Thus, the aggregation of climate input data has less 343 

impact on the spatial variability of simulated wheat yields under water limited conditions than 344 

the simultaneous aggregation of soil and climate for both regions. 345 

3.2 Aggregation effects on simulated crop yields 346 

3.2.1 Aggregation effect on silage maize yield simulations in NRW and Tuscany 347 

In a next step, the aggregation errors were calculated based on Eq. 1-5 for the different 348 

regions and combinations of aggregation. Hereby, the finest resolution (S1xC1) was always 349 

chosen as the reference simulation in each region. The difference of crop yields when 350 

simulated at a coarser resolution of soil and climate input compared to the finest resolution at 351 

1 km (S1xC1) is considered as the effect of input data aggregation on yield simulations. The 352 

magnitude of yield differences for silage maize ranged from -6 to 6 t ha-1 (Fig. 8) for both 353 

regions. In general, the average bias in silage maize yield (MD) due to input data aggregation 354 

was always positive, except for the combined aggregation of soil and climate variables in 355 

Tuscany (S10xC10, S25xC25, S50xC50 respective MDs are -0.07,-0.56 and -0.17 Fig. 8 Tuscany 356 



1st row). For silage maize simultaneous aggregation of soil and climate to coarser resolution 357 

of 50 and 100 km caused lower simulated yield in the North-East of NRW compared to the 358 

reference resolution (1 km) as indicated by negative yield differences, while higher yields 359 

with positive yield difference are observed towards the southern part (Fig. 8, panel A: S50xC50 360 

and S100xC100). A similar pattern can be distinguished when aggregating soil input data to 50 361 

and 100 km combined with an average regional climate (Fig. 8, panel A: S50xCNRW and 362 

S100xCNRW). The combination of an average regional climate for NRW with the soil input data 363 

at 1 km resolution has almost no yield difference with respect to the simulated maize yields of 364 

the reference resolution (Fig. 8, panel A: S1xCNRW). The spatial patterns of yield differences 365 

for other combinations (Fig. 8, panel A: from S10xCNRW to S100xCNRW, 2nd row) are similar to 366 

the pattern of yield differences that are observed with the simultaneous aggregation of soil 367 

and climate data (Fig. 8, panel A: from S10xC10 to S100xC100).  368 

A similar observation can be made for the spatial patterns of yield differences in Tuscany for 369 

maize under water-limited conditions (Fig. 8, panel B). With decreasing resolution of soil and 370 

climate input data, the yield differences are positive towards the northern part and negative 371 

towards the southern part of Tuscany (Fig. 8, panel B: S50xC50 and S100xC100). The yield 372 

difference for silage maize due to the combination of the average regional climate (CTUS) with 373 

soil input at 1 km resolution is zero towards the northern part, while it is positive from the 374 

central to the southern part of Tuscany (Fig. 8, panel B: S1xCTus). The pattern of yield 375 

differences for silage maize in Tuscany based on simultaneous aggregation of soil and climate 376 

input data is similar (Fig. 8, panel B: from S10xC10 to S100xC100, 1st row) to the pattern 377 

observed when only soil is aggregated and combined with the average regional climate (Fig. 378 

8, panel B: from S10xCTus to S100xCTus, 2nd row). The yield differences are either positive or 379 

zero for Tuscany when aggregation of climate input is combined with the dominant soil 380 

(STUS) (Fig. 8, panel B, 3rd row). 381 



[Figure 8 Here] 382 

The aggregation effects on simulated silage maize yields are further analyzed as absolute 383 

percentage yield difference (Eq. 1) from the yields simulated on the reference 1 km 384 

resolution. The variability of absolute percentage yield difference for silage maize is 385 

presented as box plots and its frequency distribution as violin plot for different aggregation 386 

levels for NRW (Fig. 9A) and Tuscany (Fig. 9B). The absolute percentage  yield differences 387 

(%) for silage maize yield for the ensemble mean for combined soil and climate data 388 

aggregation are in general higher for Tuscany than for NRW (Fig. 9). The mean absolute 389 

percentage yield differences are ranging from 5 to 12 % in NRW and from 15 to 35 % in 390 

Tuscany. Looking at the histograms, it becomes also clear, that the variability of the absolute 391 

percentage  yield differences in NRW can reach up to 40 % in some grid cells, and that it can 392 

be even larger in Tuscany (>40%). On the other hand, lowest values of the absolute 393 

percentage yield difference are between 0 to 5 % in NRW and 0 to 15 % in Tuscany.  394 

[Figure 9 Here] 395 

The aggregation effect at the regional scale quantified as the normalized or relative average 396 

absolute yield deviation (rAAD) of silage maize yield in NRW is below 35 % for all crop 397 

models regardless of the aggregation level of soil and climate input (Fig. 10, panel SyxCz) 398 

whereas the rAAD increases with decreasing resolution. The rAAD is highest reaching 30 % 399 

for the EPIC model followed by DayCent, when soil and climate input is aggregated to 100 400 

km (S100xC100), and lowest for MONICA, which is always below 10%, while the ensemble 401 

mean is about 10%. In contrast, when soil and climate input are aggregated, rAAD for the 402 

maize simulations in Tuscany is much higher and reaches for DailyDayCent values of ~60 %. 403 

Lowest values were found in Tuscany for CENTURY (<16%), indicating that the overall 404 

spread of the model results is much larger compared to NRW. The larger spread but also the 405 

higher values of rAAD for some models in Tuscany is also reflected in the rAAD of the 406 



ensemble mean, which reaches 30% at the lowest input data resolution (S100xC100). However, 407 

the effect of aggregating climate data, while keeping the dominant regional soil constant 408 

(panels: SNRWxCz and STUSxCz), shows a completely different picture. In this case, the rAAD 409 

seems to be relatively unaffected by the aggregation of climate inputs, and additionally, the 410 

spread between models is even larger. When aggregating soil inputs and combining it with the 411 

regional mean climate (SyxCNRW and SyxCTUS), the rAAD shows a similar pattern for 412 

respective crop models as in the simultaneous aggregation of soil and climate inputs. Only 413 

EPIC and CENTURY predicted decreased rAAD when decreasing soil resolution from 25 to 414 

50 km for SyxCTUS in Tuscany. 415 

[Figure 10 Here] 416 

3.2.2  Aggregation effect on winter wheat yield simulation in NRW and Tuscany 417 

As already shown for silage maize in NRW, the simultaneous aggregation of soil and climate 418 

input to coarser resolutions of 50 and 100 km caused lower simulated wheat yields with 419 

respect to the reference resolution (1 km). This is indicated by negative winter wheat yield 420 

differences towards the North-Eastern part of NRW, while higher simulated yields with 421 

positive yield differences are observed toward the South of NRW (Fig. 11, panel A: S50xC50 422 

and S100xC100). A similar pattern is observed when aggregating soil input to 50 and 100 km 423 

and combining it with the mean regional climate (Fig. 11, panel A: S50xCNRW and S100xCNRW). 424 

The aggregation of climate data at different resolutions with the dominant regional soil caused 425 

higher simulated wheat yields than yield simulations for the reference resolution at 1km (Fig. 426 

11, panel A: from SNRWxC1 to SNRWxC100). The mean yield differences for winter wheat in 427 

NRW (Fig. 11, panel A) ranged from 0.01 to 1.0 t ha-1. They increased when climate input 428 

was aggregated from 1 to 100 km resolution and combined with the dominant regional soil 429 

(Fig. 11, panel A: 3rd row). The mean absolute yield differences for winter wheat (AMD i.e. 430 

numbers in each figures) are increasing with decreasing resolution of soil and climate input 431 



data. The highest mean yield difference in NRW of 1 t ha-1 is observed for the combination of 432 

dominant soil and 100 km climate aggregation (SNRWxC100). Again, the overall findings 433 

indicate that the simultaneous aggregation of soil and climate input data has higher impact on 434 

the mean yield difference than the aggregation of only soil or climate (Fig. 11 Panel A 1st 435 

row).  436 

[Figure 11 Here] 437 

For Tuscany, the mean yield differences for wheat were at maximum 2 t ha-1, mainly located 438 

in the northern part, while for other parts of Tuscany slightly negative differences or no 439 

difference occurred (Fig. 11, Panel B). In general, the mean yield difference of simulated 440 

wheat yields for Tuscany increased with the combination of aggregated soil or climate input 441 

to coarser resolutions (from 10 km to 100 km).  442 

In comparison to NRW, the absolute percentage yield differences for winter wheat in Tuscany 443 

has higher values, which range from 10 to 15 % when aggregating soil and climate input 444 

simultaneously to coarser resolutions (Fig. 12). Additionally to the larger mean error, the 445 

spread of the absolute percentage yield differences is also larger for Tuscany compared to 446 

NRW. Aggregating soil input data, while keeping the climate input constant over the region 447 

(CNRW or CTUS), indicates also an increasing trend of absolute percentage yield difference for 448 

NRW. For Tuscany the absolute percentage yield differences increased with climate 449 

resolution of 10 and 25 km and slightly decreased for resolutions of 50 and 100 km. Looking 450 

at the histograms (Fig. 12) it becomes also visible that the aggregation of soil input data 451 

combined with the dominant climate leads to large absolute percentage yield spreads between 452 

the grid-cells. In both regions, the shape of the violin plots are similar, indicating that the 453 

lower absolute percentage yield differences are found in a higher number of grid cells, while 454 

only few pixels have very high absolute percentage  yield differences (Fig. 12). 455 

[Figure 12 Here] 456 



The aggregation error for simulated wheat yields in NRW quantified at regional level as 457 

normalized or relative average absolute yield deviation (rAAD) (Eq. 5) is below 30 % for 458 

most of the crop models, while only two models HERMES and DailyDayCent show rAAD 459 

values higher than 30 %, when climate input is aggregated and combined with the dominant 460 

soil (Fig. 13NRW). For the combined aggregation of soil and climate input data (SyxCz), the 461 

rAAD increases with decreasing resolution in both regions. However, maximum rAAD values 462 

are observed in Tuscany reaching almost 50% with the EPIC model (Fig. 13 TUS). The 463 

rAAD values for winter wheat are, in general, larger in Tuscany for the same aggregation 464 

levels. The spread between the models is also larger in Tuscany compared to NRW, which 465 

had been already observed for maize (Fig. 10). Thus, for simulation of winter wheat under 466 

water limited conditions, the aggregation error at regional level shows an increasing trend 467 

when soil and climate input data are simultaneously aggregated to the coarser resolutions 468 

regardless of the region (Fig. 13: panels SyxCz). The increase of rAAD is less pronounced in 469 

winter wheat simulations, when only climate or soil input is aggregated except for climate 470 

input aggregation combined with the dominant soil in Tuscany (Fig 13 TUS). 471 

[Figure 13 Here] 472 

4 Discussion 473 

4.1 Input data aggregation and main effect in simulated yield 474 

Crop model simulations depend highly on the availability and reliability of input data for soil 475 

parameter and climate variables. As Ewert et al. (2015, 2011) already stated, the spatial 476 

aggregation of input data from local to regional scale reduces the variability of these data. 477 

Furthermore, the deformation of data for different climatic variables when aggregated from 478 

higher resolution of 1 km to coarser resolution of 10, 25, 50, and 100 km is evaluated in 479 

Hoffmann et al. (2017), indicating that the spatial variability of climatic variables decreases 480 



due to data aggregation (1 to 100 km) with similar mean values (Hoffmann et al., 2015). For 481 

example, in the mountainous Northwestern part of Tuscany, the low values for daily 482 

minimum temperature detectable at 1 km resolution are averaged out at coarser resolutions of 483 

100 km (Fig. 4). The same applies to the higher temperatures at 1 km resolution at the 484 

southern edge of the region (Fig. 4). This means that the aggregation of data in heterogeneous 485 

areas has stronger impacts on the extreme than on the mean values. The same feature of a loss 486 

of extreme values has been also reported for temporal aggregation of climatic data by 487 

Weihermuller et al. (2011).  488 

As shown in the results there are common trends in the simulated yields as a function of input 489 

data aggregation in NRW and Tuscany but also differences are detectable between the two 490 

study regions: 491 

1. Combined aggregation of soil and climate lead to an increase of the error in simulated 492 

yields with decreasing resolution for both winter and spring crop. 493 

2. Aggregation of soil data inputs, while keeping the mean regional climate, shows, in 494 

NRW, comparable effects on the aggregation error in simulated yields as a combined 495 

aggregation of soil and climate for both winter and spring crop. However, in Tuscany 496 

the aggregation error due to soil data aggregation is generally higher regardless of the 497 

resolution. 498 

3. Aggregation of climate data inputs to coarser resolutions, while keeping the dominant 499 

regional soils, shows variable effects on the error in simulated yields and changes only 500 

little with increasing resolution for both winter and spring crop (wheat and maize) for 501 

both study regions.  502 

4. The Mediterranean region (Tuscany) shows larger spread between the models and 503 

larger aggregation errors. 504 



Point 1 and 2 has been already reported for NRW by Hoffmann et al. (2017) but due to the 505 

limitation of the study to one region no generalization could be made. By analyzing the 506 

aggregation effect as average absolute percentage difference between grid cell yields at the 507 

coarse resolutions (20, 25, 50, 100 km) compared to the finest resolution (1 km) for two 508 

contrasting regions (NRW and Tuscany) it becomes  evident, that soil aggregation has a 509 

stronger impact in Tuscany compared to NRW for both crops. When analyzing the absolute 510 

bias of average simulated yields, this is only evident for silage maize. . In contrast, 511 

disaggregation of soil data from coarser resolution (2.80x2.80) to finer resolution (10x10) did 512 

not improve the regional yield simulation of grain maize in the central US Great Plains 513 

(Easterling et al., 1998). Increasing resolution of climate data using the same soil as model 514 

input, did hardly increase the aggregation error, although the assumption of one dominant soil 515 

over the whole region had strong effects on the mean absolute yield difference (AMD, Figs. 8 516 

and 11) and on the average absolute percentage yield difference (Figs. 9 and 12) except for 517 

winter wheat in Tuscany. The impact of climatic data aggregation on simulated crop yield has 518 

been studied by Zhao et al. (2015b) who related the spatial variability of climatic data to 519 

topographic features (mainly elevation) in the landscape. Hereby, they found that flat and 520 

more homogeneous areas can be aggregated to coarser resolution without increasing the 521 

aggregation error, while more heterogeneous landscapes react differently with much larger 522 

aggregation errors. The aggregation effect of climate data for winter wheat for a Scandinavian 523 

region in Finland was also evaluated by Angulo et al. (2013), who stated that simulated yield 524 

distributions are similar and independent of the resolution of the climate input data. As both 525 

regions analyzed in our study are rather heterogeneous in terms of elevation and climate, an 526 

effect of the aggregation of climate data on the simulated yields could be expected, but the 527 

effect was relatively small (Figs. 8, 9, 11 and 12), which could be due to the strong influence 528 

of the choice of the dominant regional soil (STUS and SNRW). 529 



Depending on the extent of heterogeneity in topographic and climatic features, there is a 530 

threshold of the data resolution  where the data aggregation effect on model simulation error 531 

is minimized. This has been investigated in Zhao et al. (2015b), defining the requirement of 532 

data at high resolution in topographically heterogeneous regions compared to plain areas. For 533 

the aggregation of soils, the soil properties at the field level are aggregated to the regional 534 

level. The aggregation of soil properties from fine to coarser resolution is classically done by 535 

selecting the dominant soil type with a corresponding reference soil profile rather than 536 

averaging soil properties. The reasons not to use spatial averaging is quite obvious, because 537 

averaging e.g. soil texture is associated with considerable problems. For example, a grid cell 538 

containing an entirely sandy soil for half of its area with the other half a clayey textured soil 539 

throughout the rooting zone would provide a sandy clay on average, which adequately reflects 540 

neither the physical properties of sandy soil material nor those of clayey soil material. On the 541 

other hand, aggregation by dominant soil type will lead to a loss of information in the 542 

simulated outputs because non-dominant but functionally very differently behaving soils will 543 

not be taken into account during the model runs at coarser resolutions (10-100 km) 544 

(Coucheney et al., 2018). In consequence, model responses (in our case yield) from non-545 

dominant areas of the grid cell will not be reproduced at large scale. The effect of different 546 

aggregation or scaling approaches on soil hydraulic properties has been studied by Montzka et 547 

al. (2017) but the propagation of the different outputs through non-linear models such as crop 548 

growth models has not been analyzed.  549 

The application of soil data aggregation to coarser resolution has considerable impact on 550 

simulated crop yields and induces biased results at the regional scale at coarser resolutions. 551 

Therefore, in the next chapter, the quantification of the aggregation error in simulated crop 552 

yields for maize (spring crop) and winter wheat (winter crop) will be discussed. 553 



4.2 Aggregation error on crop yield simulations 554 

4.2.1 Winter wheat 555 

The aggregation effect of climate data was evaluated for winter wheat for a Scandinavian 556 

region in Finland (Angulo et al., 2013) and the aggregation effect of soil data on simulated 557 

yields  of winter wheat was evaluated for a region with a temperate climate in Germany 558 

(Angulo et al., 2014). Angulo et al. (2014) used the frequency distribution of crop yields as a 559 

characteristic fingerprint to compare the effect of input data aggregation between crop models 560 

and input data resolutions. They found that the fingerprints were similar for the different 561 

resolutions of climate input data, while they varied across the different models applied. In line 562 

with these results, the distribution of simulated winter wheat yield  in NRW did not differ 563 

much between different resolutions of climate input. However, in Tuscany, the range of the 564 

frequency distribution and the average absolute percentage yield difference increased with 565 

decreasing resolution of climate input data (Fig. 12B, climate aggregation panel). Aggregating 566 

soil types at 1 km2 resolution to the dominant soil in a coarser grid cell without aggregating 567 

the climate variables, tends to cause a positive bias in wheat yields in both regions (Figure 568 

11A and B, row 2). This indicates, that in both regions the more productive soils for winter 569 

wheat were dominant in most of the grid cells in the different resolutions. However, there 570 

were two instances where the positive wheat yield bias decreased when changing from the 10 571 

km resolution (S10 x Cz ) to the 25 km resolution (S25 x Cz) in both regions. Additionally, the 572 

combination of dominant soil at regional level with aggregated climate for both regions 573 

showed positive yield bias for winter wheat simulation (Fig. 11, row 3). This indicates the 574 

highly productive characteristics of aggregated soil at regional level leading to positive 575 

simulated yield bias. Here it has to be noted that, if the aggregated soil at regional level would 576 

have been a less productive soils, a negative yield bias would have  been observed in the 577 

simulations.  578 



In NRW, the range and the mean of the absolute percentage yield difference increased when 579 

both soil and climate input data were aggregated, while in Tuscany only the mean of absolute 580 

percentage  yield difference increased but not the range. For winter wheat, the aggregation 581 

effect on the ensemble yield due to aggregated climate data (1 to 100 km), quantified as 582 

relative average absolute deviation (rAAD), was maximum up to 10 % (Zhao et al., 2015a) 583 

with mean of 3-5 % for NRW, while we have found maximum rAAD of 38% and 50% for 584 

NRW and Tuscany respectively and around 15% for the ensemble mean in both regions (Fig. 585 

13). These values did not change when combinations of aggregated soil and climate data were 586 

used in the ensemble simulations. Thus, for winter wheat, the average error of climate data 587 

aggregation combined with regional soil type over the model ensemble is between 10 and 15 588 

% in both regions. However, the uncertainties in the aggregation error for winter wheat yields 589 

are higher in Tuscany as shown in the wider range of the mean absolute yield difference and 590 

the relative rAAD in Tuscany (Fig. 12 and 13). Thus, the uncertainty in the aggregation effect 591 

for the winter crop in the temperate regions due to input data aggregation (irrespective of 592 

climate or soil data) is lower compared to the Mediterranean region probably due to the, on 593 

average, positive climatic water balance and the higher water holding capacity (Hoffmann et 594 

al., 2015).  595 

With respect to the differences in aggregation error for simulated wheat yields between the 596 

single models, there is no evident consistency in the obtained results, except that the EPIC 597 

model could be classified as more sensitive to soil and climate data aggregation, having both 598 

in Tuscany and NRW relative rAADs above the ensemble mean, whereas the STICS model 599 

belongs to the less sensitive models with relative rAADs close to the ensemble mean. This 600 

may be due to differences in reference evapotranspiration (Penman-Monteith against 601 

Priestley- Taylor) and in approaches to calculate light absorption (one leaf versus multi-layer 602 

approach) (Brisson et al., 1998).  603 



4.2.3 Silage maize 604 

The mere aggregation of the soil types according to the dominant soil in the coarser grid cell, 605 

caused a positive bias in silage maize yields in both regions (Figure 8A and B, row 2) as 606 

previously observed for wheat yields. In both regions, the more productive soils seem to be 607 

dominant in most of the grid cells, although the positive bias strongly decreased in Tuscany 608 

from a mean yield difference of 1.24 t ha-1 to 0.43 t ha-1 when changing from the 1 km 609 

resolution (S1 x CTUS ) to the 25 km resolution (S25 x CTUS ). 610 

The combined aggregation of soil and climate input data caused an increase in median and 611 

average absolute percentage yield difference of silage maize with decreasing resolution (Fig. 612 

9). This has been already shown by Hoffman et al. (2016) for NRW. However, in contrast, to 613 

the winter crop (wheat), the range and average absolute percentage yield differences due to 614 

climate and soil input data aggregation for silage maize were much higher in Tuscany 615 

compared to NRW. This observation was also made when only climate input data were 616 

aggregated. Thus, irrespective of the kind of input data aggregated, simulated maize yields in 617 

the Mediterranean region showed higher absolute percentage yield differences compared to 618 

the temperate region already at resolutions of 10 km. At a resolution of 100 km, the absolute 619 

percentage yield differences were higher by a factor of up to 3 compared to the temperate 620 

region when both soil and climate data were aggregated (Fig. 9). This has been corroborated 621 

by the results published by Folberth et al. (2014) for the US and could be explained by the 622 

difference in climate conditions between the temperate and Mediterranean site, which is 623 

higher during the vegetation period of the spring crops compared to the winter crop (Table 3). 624 

The average precipitation in Tuscany and NRW during the growing period of silage maize is 625 

around 350 mm in both regions, whereas the mean temperature is much lower in the 626 

temperate region (15.7 and 21.7 °C in NRW and Tuscany, respectively). Thus, warmer and 627 

drier conditions during the growing period tend to translate into higher aggregation errors in 628 

regional crop simulations. These results are confirmed by the higher relative rAAD of 629 



ensemble yields of maize compared to winter wheat in both regions (Fig. 10 and 13). With 630 

respect to maize yields, relative rAAD in Tuscany increases stronger compared to NRW when 631 

the resolution of input data is decreasing (Fig. 10). In both regions, the increase in relative 632 

rAAD from fine to coarse resolution is strongest when aggregation of climate data is 633 

combined with aggregation of soil input data and can reach an average relative rAAD of the 634 

ensemble mean of 25%. Extreme model-dependent relative rAAD for maize yields can reach 635 

58% in Tuscany compared 38% in NRW. In the case of the spring crop (maize), the 636 

aggregation error of the ensemble mean reaches already 20% when a resolution of 10 km for 637 

the soil or climate data is used, whereas in NRW such high aggregation errors are never 638 

reached with simulated maize yields regardless of the spatial resolution of soil and climate 639 

data. These results suggest that reliable regional simulation of spring crop yield in 640 

Mediterranean climate conditions requires high spatial resolution of both soil and climate 641 

data. 642 

Looking at the differences between the individual models in the aggregation error for 643 

simulated maize yields, DailyDayCent seems to be most sensitive to soil aggregation or the 644 

combined aggregation of soil and climate input data both in NRW (together with EPIC) and 645 

in Tuscany (Fig. 10). In NRW, this is consistent with the findings for maize yield simulations 646 

(Fig. 10). Thus, there is no single explanation, which can explain the differences in sensitivity 647 

to input data aggregation among the individual models. This may require further analysis of 648 

relationships between aggregation errors and modeling approaches of certain processes. 649 

4.3 Hotspots of aggregation errors 650 

Looking at the spatial variability of the average yield differences (Fig. 8 and 11), we were 651 

able to identify several hotspots where the simulated yields of both crops were very sensitive 652 

to data aggregation by producing large yield differences (-6 to 6 t ha-1 for silage maize, -2 to 2 653 

t ha-1 for winter wheat) (Fig. 8 and 11). In NRW, the spatial patterns of yield differences due 654 



to the simultaneous aggregation of soil and climate input data (Fig. 8 and 11 Panel A, first 655 

row) and due to aggregation of soil input data only (Fig. 8 and 11 Panel A, second row) are 656 

similar for both crops. The largest wheat and maize yield differences in NRW due to 657 

aggregation of soil are found in the Northeast and in two smaller areas in the Northwest and 658 

Central-South with average yield difference of more than 3 t ha-1 in the case of maize. This 659 

indicates that aggregation of soil data is the main driver to induce aggregation errors in NRW. 660 

In Tuscany, a similar trend is observed with stronger spatial differentiation of yield 661 

differences due to aggregation of soil input data or the combination of soil and climate input 662 

data (Fig. 8 and 11 Panel B, first and second row). However, in Tuscany, the hot spots with 663 

highest yield differences for maize depend on the resolution, with underestimations being 664 

concentrated in the Center and Northwest of Tuscany for resolutions of 10 and 25 km and 665 

with underestimations in the Central and Southern part of Tuscany and overestimations in the 666 

North for resolutions of 50 and 100 km. In the case of winter wheat, the location of hot spots 667 

is similar, but overestimations with strongly positive yield differences are more prominent in 668 

the Northern part of Tuscany toward the Northern mountain ranges. In the Northern mountain 669 

region with sharp spatial gradients of temperature, the aggregation of climate input data by 670 

the average method eliminates the extreme values which exist at 1 km resolution (Hoffmann 671 

et al., 2015) and results in on average moderate temperature for coarser resolutions. Thus, 672 

aggregation in the mountain regions produces more favourable environmental conditions in 673 

the input data set of the coarser resolutions, leading to higher simulated crop yields. While in 674 

the central and Southern part of Tuscany, aggregation of climate data causes negative yield 675 

differences because small hilly areas with higher precipitation are averaged out, leading to on 676 

average lower precipitation at coarser resolutions. An a priori identification of such sensitive 677 

areas to spatial aggregation errors in terms of soil and climate characteristics would therefore 678 

help defining the appropriate grid resolution over the region being investigated. 679 



4.4 Influence of the range in altitude on the magnitude of aggregation errors 680 

As the effects of climate input data aggregation on aggregation errors in crop yields is 681 

obviously stronger in Tuscany, it could be argued that this is due the topographically stronger 682 

climatic gradient within Tuscany. The range in altitude is larger in Tuscany (0-1875 m) 683 

compared to NRW (0-845). However, if we eliminate the grid cells in Tuscany, which have 684 

an elevation above 845 m, to have a comparable range of altitude in both regions, the 685 

aggregation effects of soil and climate input on crop yields are still significantly different 686 

between the two regions (Fig. S1, 10 and 13). For simulated wheat yields, the rAADs in the 687 

coarser resolutions (50 and 100 km) even increase when eliminating grids with altitudes 688 

greater than 845 m. This supports our findings that the higher aggregation effects in Tuscany 689 

compared to NRW are mainly due to the differences in climatic conditions. 690 

5 Conclusion 691 

The aggregation effects of soil and climate data on crop yield simulations in the 692 

Mediterranean region are higher than in the temperate region in particular for the spring crop 693 

(silage maize). The magnitude of the aggregation effect in Tuscany for silage maize expressed 694 

as the percentage absolute yield difference is on average 30% compared to an average of 10 695 

% for winter wheat. Because of the higher aggregation effect on crop yield simulation in the 696 

Mediterranean region, it is important in these regions to use input data at a finer resolution for 697 

reliable estimation of regional crop yield. Moreover, in each region, there are hot spots with 698 

extremely high positive or negative yield differences due to input data aggregation. In these 699 

hot spots, a finer resolution of climate and in particular soil information is important to reduce 700 

errors in crop yield simulations. For generalization of these outcomes, further investigations 701 

in other sub-humid or semi-arid regions will be necessary. This would further help in 702 

understanding and conceptualizing how various climatic conditions and soil variability 703 

interactions make the data aggregation effect vary and to identify which conditions are critical 704 



to take into account when deciding the adequate grid resolution for reliable simulation of 705 

regional crop yield.  706 
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Table 1. Main climatic variables for the time period 1995 to 2011 for NRW and TUS. Mean is 881 

the arithmetic mean, STD is the standard deviation, and 25, 50, 75 % are the respective 882 

percentiles (Mean annual values and temporal variability) 883 

Climate variable* Summary statistics for climate variables  

NRW Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC) 
 

5.6 0.7 3.9 5.4 5.6 6.0 6.7 

TempMean (oC) 
 

9.6 0.7 7.6 9.4 9.6 10.1 10.3 

TempMax (oC) 
 

13.7 0.8 11.5 13.5 13.9 14.2 14.7 

Radiation(MJ m-2 d-1) 
 

10.4 0.4 9.6 10.1 10.4 10.6 11.5 

Windspeed (m s-1) 
 

2.6 0.1 2.4 2.5 2.6 2.7 2.8 

Precipitation (mm y-1) 
 

821.1 117.3 659.1 752.3 801.3 861.7 1022.5 

ET0  986.6 56.3 875.7 947.7 986.4 1019.2 1100.2 

cwb  165 147 -122 101 197 231 425 

Tuscany Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC) 
 

8.8 0.4 8.0 8.7 8.8 9.1 9.3 

TempMean (oC) 
 

16.1 0.5 15.1 15.8 16.2 16.5 16.8 

TempMax (oC) 
 

18.6 0.6 17.4 18.1 18.7 19.0 19.4 

Radiation(MJ m-2 d-1) 
 

14.2 0.5 12.8 14.0 14.3 14.5 15.1 

Wind speed (m s-1) 
 

2.0 0.1 1.7 1.9 2.0 2.1 2.3 

Precipitation (mm y-1) 
 

949.4 192.5 667.8 809.1 967.8 1035.6 1424.8 

ET0 (mm y-1)  1495.8 64.3 1335.3 1460.8 1524.3 1531.8 1626.1 

cwb (mm y-1)  546 244 -89 441 527 733 858 

*TempMin: Minimum Temperature, TempMean: Mean Temperature, TempMax: Maximum 884 

Temperature, ET0: Reference Evapotranspiration (calculated by using ET0 equation in FAO 56) , cwb: 885 

Climate water balance (ET0 − Precipitation) and others are as indicated 886 

 887 

 888 



Table: 2. Total soil depth and soil properties of the top soil layer in NRW and Tuscany at 1x1 889 

km resolution 890 

NRW 
Number 
of pixels  

mean std min 25% 50% 75% max 

Depth [m] 

34168 

0.29 0.03 0.10 0.30 0.30 0.30 0.30 

Sand [%] 37.66 29.76 5.00 15.00 18.00 64.00 92.00 

BD [g cm-3] 1.40 0.02 0.56 1.40 1.40 1.40 1.40 

Wilting point 
[m3 m-3] 

0.14 0.06 0.04 0.09 0.16 0.18 0.29 

Field capacity 
[m3 m-3] 

0.26 0.08 0.12 0.20 0.29 0.33 0.39 

TUS 
Number 
of pixels  

mean std min 25% 50% 75% max 

Depth [m] 

22933 

0.49 0.04 0.18 0.50 0.50 0.50 0.50 

Sand [%] 33.27 16.51 2.00 22.25 30.75 46.80 89.75 

BD [g cm-3] 1.38 0.12 0.73 1.34 1.40 1.46 1.71 

Wilting point 
[m3 m-3] 

0.10 0.02 0.05 0.08 0.10 0.12 0.20 

Field capacity 
[m3 m-3] 

0.26 0.04 0.06 0.24 0.27 0.28 0.38 

 891 

Table 3: Summary of climatic condition during the growing period of silage maize and winter 892 

wheat for NRW and Tuscany (1995-2011) 893 

Climate variable Summary statistics for climate variables during maize growing season 

NRW Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  10.6 0.6 9.5 10.3 10.6 11.0 11.6 

TempMean (oC)  15.7 0.6 14.2 15.3 15.7 15.9 17.2 

TempMax (oC)  20.9 0.8 19.2 20.5 20.8 21.2 22.9 

Radiation(MJ m-2 d-1)  16.8 0.7 15.4 16.3 16.8 17.2 18.1 

Windspeed (m s-1)  2.3 0.1 2.1 2.2 2.3 2.4 2.6 

Precipitation (mm y-1)  357.6 56.3 276.2 316.4 356.3 378.2 496.2 

ET0  686.0 40.2 616.3 670.8 685.7 708.0 770.0 

cwb  328.4 85.8 174.7 286.2 324.3 385.4 469.8 

Tuscany Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  13.1 0.6 12.1 12.6 13.1 13.4 14.4 

TempMean (oC)  21.7 0.8 20.4 21.1 21.5 22.1 23.6 

TempMax (oC)  24.6 0.9 23.2 23.8 24.5 24.9 26.6 



Radiation(MJ m-2 d-1)  21.2 0.6 19.5 20.8 21.3 21.6 22.2 

Windspeed (m s-1)  1.9 0.1 1.7 1.8 1.9 2.0 2.1 

Precipitation (mm y-1)  354.3 88.7 219.4 315.3 323.9 397.1 531.7 

ET0 (mm y-1)  1130.3 47.2 1033.7 1098.6 1141.3 1156.6 1237.8 

cwb (mm y-1)  776.0 130.0 502.0 721.7 785.5 838.3 1018.4 

                  

Climate variable Summary statistics for climate variables during wheat growing season 

NRW Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  4.4 0.9 2.8 3.9 4.3 5.1 6.3 

TempMean (oC)  8.2 0.9 6.5 7.8 8.2 8.6 10.3 

TempMax (oC)  12.1 0.9 10.3 11.8 12.2 12.5 14.3 

Radiation(MJ m-2 d-1)  9.6 1.4 4.6 9.5 9.8 10.0 12.2 

Windspeed (m s-1)  2.7 0.2 2.4 2.6 2.7 2.8 3.0 

Precipitation (mm y-1)  632.0 151.4 194.0 587.5 674.8 692.3 801.0 

ET0 (mm y-1)  710.0 151.7 133.3 710.5 739.7 779.5 825.8 

cwb (mm y-1)  78.0 106.7 -69.7 12.3 65.6 148.3 292.3 

Tuscany 
 

Mean STD Minimum 25 % 50 % 75 % Maximum 

TempMin (oC)  5.7 0.7 4.2 5.3 5.9 6.1 7.3 

TempMean (oC)  12.5 0.8 10.6 11.9 12.6 12.8 14.2 

TempMax (oC)  14.7 0.9 12.7 14.1 14.9 15.2 16.4 

Radiation(MJ m-2 d-1)  11.9 1.9 5.3 11.8 12.1 12.6 14.4 

Windspeed (m s-1)  2.1 0.2 1.8 2.0 2.1 2.2 2.4 

Precipitation (mm y-1)  591.7 188.3 104.4 506.6 566.5 683.1 901.9 

ET0 (mm y-1)  697.9 164.6 83.5 696.1 739.8 768.0 810.5 

cwb (mm y-1)  106.2 163.5 -252.5 10.6 89.4 255.7 358.0 
*TempMin: Minimum Temperature, TempMean: Mean Temperature, TempMax: Maximum Temperature, ET0: Reference 894 

Evapotranspiration, cwb: Climate water balance (ET0 − Precipitation) and others are as indicated 895 

Table 4. List of crop models used in the model ensemble 896 

No. Model Model 
abbreviation  in 
text and figures 

References 

1 AgroC b AGROC 6 (Herbst et al., 2008, Klosterhalfen et al., 2017) 

2 Century CENT (Parton et al. 1992) 

3 CoupModel ab COUP (Janssen 2012, Conrad and Fohrer, 2009) 

4 DailyDayCent DayC (Del Grosso et al., 2001, 2006)  

9 EPIC v. 0810 EPIC (Williams 1995) 

6 HERMES b HERM (Kersebaum, 2007, 2011)  



7 MONICA b MONI (Nendel et al., 2011; Specka et al., 2015) 

8 SIMPLACE<LINTUL5;SLIM> LINT (Gaiser et al., 2013; Shibu et al., 2010) 

9 STICS STIC (Bergez et al., 2013; Brisson et al., 2009, 1998) 

a only simulated wheat; b simulated NRW only 897 

Table 5. Crop management of winter wheat and silage maize in Tuscany. 898 

Management Winter wheat Silage maize Unit  

Residues 
cut and incorporated into 

soil 
Cut and incorporated into 

soil 
-   

Tillage 

plough in late 
summer/beginning of 

autumn (harrowing in the 
plains) 

plough in late 
summer/beginning of 
autumn (ripping in the 

plains) 

-   

Sowing date 10-Nov 03-Apr date   
Harvest date 25-Jun 03-Oct date   
Plant density 400 8 m-2 emerging plants 
Sowing depth 3 3 cm   
 899 

Table 6. Crop management of winter wheat and silage maize in NRW 900 

Management Winter wheat Silage maize Unit   

Residues 

straw is removed, stubbles are 
left on the field (10% of 
the above ground total 
biomass and the roots) 

straw is removed, stubbles are 
left on the field (10% of 
the above ground total 
biomass and the roots) 

-   

Tillage ploughing in autumn ploughing in autumn -   

Sowing date Oct-01 Apr-20 date   

Harvest date Aug-01 Sep-20 date   

Plant density 400 10 1/m2 emerging plants 

Sowing depth 4 6 cm   

 901 

Table 7. The abbreviation for input data combination of soil and climate data at different resolutions.  902 

*Soil resolution km *Climate resolution km SoilxClimate Remarks 

y z SyxCz soil and climate aggregation 

SReg z SRegxCz 
One dominant regional soil with 

climate aggregation 

y CReg SyxCReg 
soil aggregation with average regional 

climate 
* the subscripts y and z represents the resolution for soil and climate at 1, 10, 25, 50 and 100 km, SReg and CReg 903 
are symbols to represents regional soil and climate (eg. STus and CTus to represent for regional soil and regional 904 
climate for Tuscany). 905 
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Figure 1: Geographic location of the study regions and the elevation variability for NRW, 908 

(Germany) and Tuscany (Italy). 909 

Figure 2: Soil type for NRW aggregated according to dominant soil types for resolutions 910 

from 1 km to 100 km (Hoffmann et al., 2016). 911 

Figure 3: USDA soil texture class of the topsoil aggregated by dominant soil type from 1 km 912 

resolution. 913 

Figure 4: Average minimum, mean and maximum temperature in Tuscany for the time period 914 

1995-2013 at spatial resolutions from 1 km to 100 km 915 

Figure 5: Sketch of the modelling framework used in this study. Combination of soil and 916 

climate data at different aggregation level are distributed to the model ensemble. The 917 

collected outputs of all models were averaged to obtain the model ensemble mean. 918 

Figure 6: Ensemble mean crop yields for silage maize for NRW (A) and for Tuscany (B) 919 

under water-limited conditions for different levels of aggregation of soil and climate data. In 920 

each panel, the 1st row represents the ensemble mean yield for simultaneous aggregation of 921 

soil and climate data (SyxCz), 2nd row for aggregation of soil input data with the same regional 922 

mean climate data as SyxCReg and 3rd row for the aggregation of climate data with regional 923 

dominant soil type as SRegxCz. 924 

Figure 7: Ensemble mean crop yields for winter wheat for NRW (A) and for Tuscany (B) for 925 

different levels of aggregation of soil and climate data. In each panel, the 1st row represent the 926 

ensemble mean  yields for simultaneous aggregation of soil and climate input data (SyxCz), 927 

2nd row for aggregation of soil with constant regional mean climate (SyxCReg) and 3rd row 928 

aggregation of climate input data with regional dominant soil type as (SRegxCz). 929 



Figure 8: Average yield difference between coarser resolutions (SyxCz) and the reference 930 

resolution (S1xC1) for silage maize for NRW (A) and for Tuscany (B). 931 

Figure 9: Percentage absolute difference for silage maize yields comparing coarser 932 

resolutions (SyxCz) with the reference resolution (S1xC1) for NRW and Tuscany. The violin 933 

plots (Hintze and Nelson, 1998) show in the x-dimension the distribution of the probability 934 

density of the percentage in absolute yield difference values. The box plots show the median 935 

(red line), mean (black star), and the upper and lower quartiles (box), as well as the extreme 936 

upper and lower values (black lines) 937 

Figure 10: The relative average absolute yield deviation (rAAD) as indicator for the impact 938 

of soil and climate input data aggregation on silage maize yield simulations by different crop 939 

models as well as for the model ensemble mean (ESMB) 940 

Figure 11: Average yield difference between coarser resolutions (SyxCz) and the reference 941 

resolution (S1xC1) for winter wheat for NRW (A) and winter wheat for Tuscany (B). AMD is 942 

the average yield difference 943 

Figure 12: Percentage absolute yield differences of winter wheat between coarser resolutions 944 

(SyxCz) and the reference resolution  (S1xC1) for NRW and Tuscany. The violin plots (Hintze 945 

and Nelson, 1998) show in the x-dimension the distribution of the probability density of the 946 

percentage in absolute yield difference values. The box plots show the median (red line), 947 

mean (black star), and the upper and lower quartiles (box), as well as the extreme upper and 948 

lower values (black lines) 949 

Figure 13: The relative average absolute yield deviation (rAAD) as indicator for the impact 950 

of soil and climate input data aggregation on winter wheat yield simulations by different crop 951 

models as well as for the model ensemble mean (ESMB). 952 
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