000858073 001__ 858073
000858073 005__ 20190125103833.0
000858073 0247_ $$2doi$$a10.1007/s12567-018-0225-5
000858073 0247_ $$2ISSN$$a1868-2502
000858073 0247_ $$2ISSN$$a1868-2510
000858073 0247_ $$2ISSN$$a=
000858073 0247_ $$2ISSN$$aCEAS
000858073 0247_ $$2ISSN$$aspace
000858073 0247_ $$2ISSN$$ajournal
000858073 0247_ $$2ISSN$$a(Internet)
000858073 037__ $$aFZJ-2018-06991
000858073 082__ $$a620
000858073 1001_ $$0P:(DE-HGF)0$$aSchmidt, Hauke$$b0$$eCorresponding author
000858073 245__ $$aAccurate numerical simulation on the structural response of the VEGA payload fairing using modal coupling approach
000858073 260__ $$aWien [u.a.]$$bSpringer$$c2018
000858073 3367_ $$2DRIVER$$aarticle
000858073 3367_ $$2DataCite$$aOutput Types/Journal article
000858073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548409089_3165
000858073 3367_ $$2BibTeX$$aARTICLE
000858073 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858073 3367_ $$00$$2EndNote$$aJournal Article
000858073 520__ $$aStructural aeroacoustic interactions are of great interest in the design and manufacture of aerospace structures. During the lift off and the early phases of the launch various external loads like steady accelerations, random and broadband frequency vibrations, acoustic loads due to jet noise and fluid–structure interactions act on the lightweight panel structure of the payload fairing. Thereby internal vibrational loads and instability effects may be caused by the interaction of various mechanical loads and acoustic noise acting on the cylindrical shell structure. Within the project “Prediction of Acoustic Loads on Space Structures” funded by the European Space Agency (ESA) an aeroelastic coupling approach has been built up. Therein, the aerodynamic loads on the VEGA payload fairing (PLF) have been determined for different flight conditions by the use of the open-source CFD solver SU2. Due to the different discretization between the computational fluid dynamics (CFD) and computational structural dynamics (CSD) mesh the approach of Radial Basis Function (RBF) has been used to interpolate the resulting pressure distribution onto the structural model. According to that the dynamic response of the PLF has been analyzed by taking the basic aerodynamic forces, structural vibration and acoustic pressure fluctuations into account. An intrinsic part of this work is the numerical simulation and assessment of the interaction between structural vibrations, transonic flow and acoustic pressure fluctuations during the early launch phase.
000858073 588__ $$aDataset connected to CrossRef
000858073 7001_ $$0P:(DE-Juel1)176474$$aKoh, S.$$b1$$ufzj
000858073 7001_ $$0P:(DE-HGF)0$$aDafnis, Athanasios$$b2
000858073 7001_ $$0P:(DE-HGF)0$$aSchröder, Kai-Uwe$$b3
000858073 7001_ $$0P:(DE-HGF)0$$aSchröder, Wolfgang$$b4
000858073 773__ $$0PERI:(DE-600)2553331-9$$a10.1007/s12567-018-0225-5$$p1-11$$tCEAS space journal$$v1$$x1868-2510$$y2018
000858073 909CO $$ooai:juser.fz-juelich.de:858073$$pextern4vita
000858073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000858073 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176474$$aForschungszentrum Jülich$$b1$$kFZJ
000858073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000858073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000858073 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b4$$kRWTH
000858073 9141_ $$y2018
000858073 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858073 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858073 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000858073 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858073 920__ $$lno
000858073 980__ $$ajournal
000858073 980__ $$aEDITORS
000858073 980__ $$aI:(DE-Juel1)JSC-20090406
000858073 9801_ $$aEXTERN4VITA