000858099 001__ 858099
000858099 005__ 20240712100918.0
000858099 0247_ $$2doi$$a10.5194/acp-18-8505-2018
000858099 0247_ $$2ISSN$$a1680-7316
000858099 0247_ $$2ISSN$$a1680-7324
000858099 0247_ $$2ISSN$$a=
000858099 0247_ $$2ISSN$$aAtmospheric
000858099 0247_ $$2ISSN$$achemistry
000858099 0247_ $$2ISSN$$aand
000858099 0247_ $$2ISSN$$aphysics
000858099 0247_ $$2ISSN$$a(Online)
000858099 0247_ $$2Handle$$a2128/20317
000858099 0247_ $$2WOS$$aWOS:000435484300003
000858099 0247_ $$2altmetric$$aaltmetric:43825872
000858099 037__ $$aFZJ-2018-07017
000858099 082__ $$a550
000858099 1001_ $$0P:(DE-Juel1)165935$$aPoshyvailo, Liubov$$b0$$eCorresponding author
000858099 245__ $$aSensitivities of modelled water vapour in the lower stratosphere: temperature uncertainty, effects of horizontal transport and small-scale mixing
000858099 260__ $$aKatlenburg-Lindau$$bEGU$$c2018
000858099 3367_ $$2DRIVER$$aarticle
000858099 3367_ $$2DataCite$$aOutput Types/Journal article
000858099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414230_13872
000858099 3367_ $$2BibTeX$$aARTICLE
000858099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858099 3367_ $$00$$2EndNote$$aJournal Article
000858099 520__ $$aWater vapour (H2O) in the upper troposphere and lower stratosphere (UTLS) has a significant role for global radiation. A realistic representation of H2O is therefore critical for accurate climate model predictions of future climate change. In this paper we investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O in the lower stratosphere (LS).To assess the sensitivities of simulated H2O, we use the Chemical Lagrangian Model of the Stratosphere (CLaMS). First, we examine CLaMS, which is driven by two reanalyses, from the European Centre of Medium-Range Weather Forecasts (ECMWF) ERA-Interim and the Japanese 55-year Reanalysis (JRA-55), to investigate the robustness with respect to the meteorological dataset. Second, we carry out CLaMS simulations with transport barriers along latitude circles (at the Equator, 15 and 35°N/S) to assess the effects of horizontal transport. Third, we vary the strength of parametrized small-scale mixing in CLaMS.Our results show significant differences (about 0.5ppmv) in simulated stratospheric H2O due to uncertainties in the tropical tropopause temperatures between the two reanalysis datasets, JRA-55 and ERA-Interim. The JRA-55 based simulation is significantly moister when compared to ERA-Interim, due to a warmer tropical tropopause (approximately 2K). The transport barrier experiments demonstrate that the Northern Hemisphere (NH) subtropics have a strong moistening effect on global stratospheric H2O. The comparison of tropical entry H2O from the sensitivity 15°N/S barrier simulation and the reference case shows differences of up to around 1ppmv. Interhemispheric exchange shows only a very weak effect on stratospheric H2O. Small-scale mixing mainly increases troposphere–stratosphere exchange, causing an enhancement of stratospheric H2O, particularly along the subtropical jets in the summer hemisphere and in the NH monsoon regions. In particular, the Asian and American monsoon systems during a boreal summer appear to be regions especially sensitive to changes in small-scale mixing, which appears crucial for controlling the moisture anomalies in the monsoon UTLS. For the sensitivity simulation with varied mixing strength, differences in tropical entry H2O between the weak and strong mixing cases amount to about 1ppmv, with small-scale mixing enhancing H2O in the LS.The sensitivity studies presented here provide new insights into the leading processes that control stratospheric H2O, which are important for assessing and improving climate model projections.
000858099 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000858099 536__ $$0G:(DE-Juel1)jicg11_20090701$$aChemisches Lagrangesches Modell der Stratosphäre (CLaMS) (jicg11_20090701)$$cjicg11_20090701$$fChemisches Lagrangesches Modell der Stratosphäre (CLaMS)$$x1
000858099 588__ $$aDataset connected to CrossRef
000858099 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b1
000858099 7001_ $$0P:(DE-Juel1)129130$$aKonopka, Paul$$b2
000858099 7001_ $$0P:(DE-Juel1)129123$$aGünther, Gebhard$$b3
000858099 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b4
000858099 7001_ $$0P:(DE-Juel1)173992$$aPodglajen, Aurelien$$b5$$ufzj
000858099 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b6
000858099 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-18-8505-2018$$gVol. 18, no. 12, p. 8505 - 8527$$n12$$p8505 - 8527$$tAtmospheric chemistry and physics$$v18$$x1680-7324$$y2018
000858099 8564_ $$uhttps://juser.fz-juelich.de/record/858099/files/acp-18-8505-2018.pdf$$yOpenAccess
000858099 909CO $$ooai:juser.fz-juelich.de:858099$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165935$$aForschungszentrum Jülich$$b0$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b1$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129130$$aForschungszentrum Jülich$$b2$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129123$$aForschungszentrum Jülich$$b3$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b4$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173992$$aForschungszentrum Jülich$$b5$$kFZJ
000858099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b6$$kFZJ
000858099 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000858099 9141_ $$y2018
000858099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858099 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000858099 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858099 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000858099 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000858099 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000858099 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858099 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858099 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000858099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000858099 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858099 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000858099 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000858099 9801_ $$aFullTexts
000858099 980__ $$ajournal
000858099 980__ $$aVDB
000858099 980__ $$aI:(DE-Juel1)IEK-7-20101013
000858099 980__ $$aI:(DE-82)080012_20140620
000858099 980__ $$aUNRESTRICTED
000858099 981__ $$aI:(DE-Juel1)ICE-4-20101013