000858139 001__ 858139
000858139 005__ 20210129235841.0
000858139 0247_ $$2doi$$a10.1007/s11244-018-1065-4
000858139 0247_ $$2ISSN$$a1022-5528
000858139 0247_ $$2ISSN$$a1572-9028
000858139 0247_ $$2WOS$$aWOS:000451652600016
000858139 037__ $$aFZJ-2018-07046
000858139 082__ $$a540
000858139 1001_ $$0P:(DE-Juel1)164137$$aNemšák, Slavomír$$b0
000858139 245__ $$aIn Aqua Electrochemistry Probed by XPEEM: Experimental Setup, Examples, and Challenges
000858139 260__ $$aDordrecht$$bSpringer Science Business Media B.V.$$c2018
000858139 3367_ $$2DRIVER$$aarticle
000858139 3367_ $$2DataCite$$aOutput Types/Journal article
000858139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604405715_32573
000858139 3367_ $$2BibTeX$$aARTICLE
000858139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858139 3367_ $$00$$2EndNote$$aJournal Article
000858139 520__ $$aRecent developments in environmental and liquid cells equipped with electron transparent graphene windows have enabled traditional surface science spectromicroscopy tools, such as scanning X-ray photoelectron microscopy, X-ray photoemission electron microscopy (XPEEM), and scanning electron microscopy to be applied for studying solid–liquid and liquid–gas interfaces. Here, we focus on the experimental implementation of XPEEM to probe electrified graphene–liquid interfaces using electrolyte-filled microchannel arrays as a new sample platform. We demonstrate the important methodological advantage of these multi-sample arrays: they combine the wide field of view hyperspectral imaging capabilities from XPEEM with the use of powerful data mining algorithms to reveal spectroscopic and temporal behaviors at the level of the individual microsample or the entire array ensemble.
000858139 536__ $$0G:(DE-HGF)POF3-522$$a522 - Controlling Spin-Based Phenomena (POF3-522)$$cPOF3-522$$fPOF III$$x0
000858139 588__ $$aDataset connected to CrossRef
000858139 7001_ $$0P:(DE-HGF)0$$aStrelcov, Evgheni$$b1
000858139 7001_ $$0P:(DE-HGF)0$$aGuo, Hongxuan$$b2
000858139 7001_ $$0P:(DE-HGF)0$$aHoskins, Brian D.$$b3
000858139 7001_ $$0P:(DE-Juel1)165376$$aDuchon, Tomas$$b4$$ufzj
000858139 7001_ $$0P:(DE-HGF)0$$aMueller, David N.$$b5
000858139 7001_ $$0P:(DE-HGF)0$$aYulaev, Alexander$$b6
000858139 7001_ $$0P:(DE-HGF)0$$aVlassiouk, Ivan$$b7
000858139 7001_ $$0P:(DE-HGF)0$$aTselev, Alexander$$b8
000858139 7001_ $$0P:(DE-Juel1)130948$$aSchneider, Claus M.$$b9
000858139 7001_ $$0P:(DE-HGF)0$$aKolmakov, Andrei$$b10$$eCorresponding author
000858139 773__ $$0PERI:(DE-600)1500978-6$$a10.1007/s11244-018-1065-4$$gVol. 61, no. 20, p. 2195 - 2206$$n20$$p2195 - 2206$$tTopics in catalysis$$v61$$x1572-9028$$y2018
000858139 8564_ $$uhttps://juser.fz-juelich.de/record/858139/files/Nem%C5%A1%C3%A1k2018_Article_InAquaElectrochemistryProbedBy.pdf$$yRestricted
000858139 8564_ $$uhttps://juser.fz-juelich.de/record/858139/files/Nem%C5%A1%C3%A1k2018_Article_InAquaElectrochemistryProbedBy.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858139 909CO $$ooai:juser.fz-juelich.de:858139$$pVDB
000858139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164137$$aForschungszentrum Jülich$$b0$$kFZJ
000858139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165376$$aForschungszentrum Jülich$$b4$$kFZJ
000858139 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130948$$aForschungszentrum Jülich$$b9$$kFZJ
000858139 9131_ $$0G:(DE-HGF)POF3-522$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000858139 9141_ $$y2018
000858139 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858139 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTOP CATAL : 2017
000858139 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858139 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858139 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858139 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858139 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
000858139 980__ $$ajournal
000858139 980__ $$aVDB
000858139 980__ $$aI:(DE-Juel1)PGI-6-20110106
000858139 980__ $$aUNRESTRICTED