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Abstract. The chemical ageing of aeolian dust, through interactions with air pollution, affects the optical and hygroscopic

properties of the mineral particles and hence their atmospheric residence time and climate forcing. Conversely, the chemical

composition of the dust particles and their role as coagulation partners impact the abundance of particulate air pollution.

This results in an anthropogenic radiative forcing associated with mineral dust notwithstanding the natural origin of most

aeolian dust. Using the atmospheric chemistry climate model EMAC with a detailed parametrisation of ageing processes and5

an emission scheme accounting for the chemical composition of desert soils, we study the direct radiative forcing globally

and regionally. Our results indicate large positive and negative forcings, depending on the region. The predominantly negative

forcing at the top of the atmosphere over large parts of the dust belt, from West Africa to East Asia, attains a maximum of

about −2 W/m2 south of the Sahel, in contrast to a positive forcing over India. Globally averaged, these forcings partially

counterbalance, resulting in a net negative forcing of −0.05 W/m2, which nevertheless represents a considerable fraction of10

the total dust forcing.

1 Introduction

Atmospheric aerosols play an important role in the climate system by affecting radiative transfer and thus the planet’s energy

budget, both directly by scattering and absorption and indirectly via its impact on cloud formation (IPCC, 2014). Furthermore,

fine particulate matter can be a human health hazard and is a major cause of morbidity and mortality globally (Lelieveld et al.,15

2015).
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Aerosols originate both from natural and anthropogenic sources, the former being mostly mineral dust, sea salt and emissions

from naturally ignited fires. Mineral dust is the dominant aerosol component by mass and natural sources are responsible for

most of its atmospheric load, even though about 25 % may be from man-made sources (Ginoux et al., 2012). The natural sources

provide an inevitable background level of atmospheric particulate matter, while studies of the human impact on climate and air

pollution commonly focus on aerosol from anthropogenic sources. However, within the atmosphere natural and anthropogenic5

aerosols are mixed and interact, and therefore should not be considered separately.

In the presence of anthropogenic pollution, gaseous compounds, notably acids, condense on the mineral dust particles (Kary-

dis et al., 2011). The consequent interactions are dubbed chemical ageing, converting the initially hydrophobic dust particles

into hydrophilic ones (Karydis et al., 2017), leading to the hygroscopic growth of the particles with implications for their op-

tical properties and the rate of deposition (Levin et al., 1996; Abdelkader et al., 2015, 2017). The dust particles also serve as10

coagulation partners for particulate anthropogenic pollution. Moreover, the chemical composition of the dust particles affects

the chemical properties of the aerosol mixture (Karydis et al., 2016) and hence the hygroscopic and optical properties as well

as the atmospheric residence time of both the natural and anthropogenic components. In view of emerging economies with

growing population and increasing emissions from industry, energy production and transport in dust affected regions such as

northern Africa, the Middle East and large parts of Asia, the importance of these effects is ever-increasing (Osipov et al., 2015;15

Osipov and Stenchikov, 2018).

In the present study we analyse the impact of mineral dust interactions with anthropogenic air pollution on radiative transfer

using the ECHAM/MESSy chemistry climate model (EMAC) (Jöckel et al., 2005, 2010). EMAC combines the Modular Earth

Submodel System (MESSy) with the ECMWF/Hamburg (ECHAM) climate model which is originally based on the weather

forecasting model of the European Centre for Medium-Range Weather Forecasts (ECMWF). Here we focus on the direct20

radiative effects while not considering aerosol cloud coupling, and ignoring radiative feedbacks on the climate system. Both

aspects, of which especially the former influences radiative forcing, will be considered in a separate study based on climate

model simulations that account for atmosphere-ocean coupling.

The article is structured as follows: In section 2 we present our methodology including the model setup-up. The effects

of dust-pollution interactions on the aerosol burdens and correspondingly the optical properties are analysed in section 3, the25

resulting impacts on radiative transfer and atmospheric heating in section 4. Conclusions are drawn in section 5.
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2 Methodology

We use the EMAC model version and configuration described by Klingmüller et al. (2018), which was shown to yield realistic

results of aerosol optical properties globally (see Fig. S1 in the supplement). This EMAC version combines ECHAM 5.3.02

and MESSy 2.52 and is configured to use the horizontal resolution T106 and 31 vertical levels. The grid spacing of the Gaussian

T106 grid, 1.125◦ along latitudes and about 1.121◦ along longitudes, at the equator corresponds to virtually quadratic cells with5

around 125 km edge length. The following MESSy submodels have been enabled: AEROPT, AIRSEA, CLOUD, CLOUDOPT,

CONVECT, CVTRANS, DDEP, GMXE, JVAL, LNOX, MECCA, OFFEMIS, ONEMIS, ORBIT, ORACLE, PTRAC, RAD,

SCAV, SEDI, SURFACE, TNUDGE, TROPOP. Descriptions of each submodel and further references can be found online in

the MESSy submodel list (MESSy 2018). The model dynamics above the boundary layer are nudged to meteorological analyses

of the European Centre for Medium-Range Weather Forecasts (ECMWF), and the prognostic radiative-transfer calculation uses10

the Tanre aerosol climatology for extinction, single scattering albedo and asymmetry factor (Tanre et al., 1984). The aerosol

radiative coupling to the meteorology, and that between aerosols and clouds have been disabled to exclude higher order effects

such as feedbacks by precipitation and evaporation changes and to focus on the direct radiative forcing. The CMIP5 RCP4.5

(Coupled Model Intercomparison Project Phase 5 Representative Concentration Pathway 4.5) (Clarke et al., 2007), GFEDv3.1

(Global Fire Emissions Database) (Randerson et al., 2013) and AeroCom (Aerosol Comparisons between Observations and15

Models) (Dentener et al., 2006) databases provide anthropogenic, biomass burning and sea salt emissions, respectively.

The EMAC model considers dust ageing by condensation of soluble compounds, reactions into ionic species and the as-

sociated water uptake. The relevant submodels include the Global Modal Aerosol Extension (GMXE) (Pringle et al., 2010a,

b), which simulates the aerosol micro-physics considering four soluble (nucleation, Aitken, accumulation, coarse) and three

insoluble modes (Aitken, accumulation, coarse) employing ISORROPIA II (Fountoukis and Nenes, 2007) or EQSAM4clim20

(Equilibrium Simplified Aerosol Model V4 for climate simulations) (Metzger et al., 2016) for the gas-aerosol partitioning

(here we use the former). The ORACLE (Organic Aerosol Composition and Evolution) submodel comprehensively describes

organic aerosols (Tsimpidi et al., 2014). Aerosol optical properties are calculated by the AEROPT (AERosol OPTical proper-

ties) submodel (Lauer et al., 2007; Pozzer et al., 2012; Klingmüller et al., 2014), which assumes the aerosol components within

each mode to be well mixed in spherical particles with volume averaged refractive index. The refractive indices considered25

for the individual components are specified in the supplement of Klingmüller et al. (2014). A detailed simulation of the gas

phase chemistry is performed by the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA) (Sander et al.,

2011). The dust emission scheme is evaluated within the online emission submodel ONEMIS (Kerkweg et al., 2006). We use
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the dust emission scheme presented by Klingmüller et al. (2018) which is based on Astitha et al. (2012) and differentiates the

Ca++, K+, Mg++ and Na+ fractions in mineral particles originating from different deserts (Karydis et al., 2016).

Our analysis covers the meteorological year 2011. Four simulations with varied emission setups (Table 1) are used to derive

the instantaneous forcing by the interaction of mineral dust and anthropogenic pollution: one simulation considering all emis-

sions (simulation 1), the same simulation but without dust emissions (simulation 2), a simulation with only natural emissions5

(simulation 3) and the corresponding simulation without dust emissions (simulations 4). For the natural emission setups we

omit the CMIP5 anthropogenic emissions and reduce the GFED biomass burning emissions by 90 % (Levine, 2014). All dust

emissions are considered to be natural, hence the anthropogenic impacts of land use and climate change on the dust emissions

(Klingmüller et al., 2016) are excluded from our analysis. The contribution of dust-pollution interactions to the total aerosol

radiative forcing can be calculated from the aerosol forcings F1...4 from the four simulations 1 to 4 by evaluating10

∆F = (F1 −F2)− (F3 −F4), (1)

the difference of the dust forcing with full emissions F1 −F2 and the dust forcing with only natural emissions F3 −F4.

Analogously, we define the dust-pollution interaction effect on aerosol optical depth (AOD), atmospheric heating rates and

aerosol particle burdens.

Note that the right hand side of Eq. 1 is symmetric regarding the exchange of dust and anthropogenic emissions, i.e., it15

considers the effect of the pollution on dust in the same way as the effect of dust on pollution. It can be instructive to expand

the term to the difference of the combined dust and pollution forcing F1 −F4 and the sum of the forcing of only dust F2 −F4

and only pollution F3 −F4,

∆F =
(

F1 −F4

)

−
(

(F2 −F4) + (F3 −F4)
)

. (2)

Due to clouds, radiative forcings strongly vary over time and accordingly their temporal averages are associated with substan-20

tial statistical uncertainty even for relatively long averaging intervals. Calculating the aerosol forcing as the difference between

fluxes computed by two simultaneous radiative transfer computations, one with and one without considering the aerosol but

both with identical cloud effect, eliminates most of the cloud related statistical noise. This drastically reduces the length of the

averaging period which is required to obtain significant results.

To estimate the remaining statistical uncertainty, we split the time series of daily averages into n sub-samples, each consisting25

of only every n-th daily value. As long as the choice of n is not too large, this ensures that each sub-sample is unbiased
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by seasonality. We consider the random terms of the sub-samples to be largely uncorrelated, which allows computation of

the statistical uncertainty as standard error of the mean (SEM) of the results from all sub-samples. To obtain approximate

uncertainty estimates, we use n = 5 for annual and n = 7 for seasonal analyses, which are small numbers with regard to the

SEM calculation but ensure representative subsets and are factors of the number of days per year and season, respectively. We

use the resulting uncertainty estimate σ to apply a significance threshold of 2σ to our results. For our purpose, the one year5

simulation period turns out to be sufficient to produce significant results.

The difference between the global direct aerosol radiative forcings in simulation 2 and simulation 4 yields an anthropogenic

aerosol forcing of −0.61 W/m2 at the top of the atmosphere (TOA) (see Figs. S2 to S5 in the supplement), consistent with the

estimate of the aerosol-radiation interaction effective radiative forcing (ERF) of −0.45 (−0.95 to 0.05) W/m2 indicated by

IPCC (2014).10

The global dust radiative forcing excluding the effect of dust-pollution interaction can be calculated as difference between the

aerosol forcings in simulation 3 and simulation 4. At the TOA the net forcing amounts to −0.08 W/m2, comprising the solar

radiation forcing of −0.16 W/m2 and the terrestrial radiation forcing of 0.09 W/m2 (see Figs. S6 to S9 in the supplement).

The net forcing is less negative than the −0.14 W/m2 reported by (Bangalath and Stenchikov, 2015), but well within the range

of −0.48 to 0.20 W/m2 estimated by Kok et al. (2017) and the wide spread of forcings from different models (Fig. S10 in15

the supplement, Yue et al. (2010), Table 1). The relatively small dust forcings in the present study compared to previous work

suggest that our estimates for the radiative effect of dust-pollution interaction which predominantly affects the solar spectrum

may be considered as conservative.

3 Aerosol burdens and optical properties

The condensation of soluble compounds, their reaction and the consequent hygroscopic growth increase the size of the dust20

particles and thereby their dry deposition velocity and the efficiency of in- and below-cloud scavenging. Figure 1 (top) shows

that the anthropogenic dust ageing significantly reduces the dust and hence the coarse mode annual mean mass burden through-

out most dust affected regions. The only notable exception is over the western Atlantic Ocean. After transport and mixing with

African pollution, well aged Saharan dust takes up substantial amounts of water resulting in a regional increase of the coarse

mode burden; elsewhere the hygroscopic growth does not compensate the burden decrease due to the more efficient removal.25

The effect on the accumulation mode aerosol burden, being most relevant for the AOD and hence radiative transfer, is more

complex because not only the effect of pollution on dust but also the effect of dust on accumulation mode pollution is relevant.

For instance, in the full emission simulation 1, unlike the dust free simulation 2, ammonium is driven out of the aerosol
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phase by the mineral cations (Metzger et al., 2006), which results in reduced aerosol ammonium burdens but increased gas

phase ammonia burdens (Fig. S11 in the supplement). This predominantly affects the accumulation mode which contains most

ammonium. Conversely, the aerosol nitrate burdens are enhanced through the interaction of mineral cations with gas phase

nitric acid. In contrast, aerosol sulphate is transferred from the accumulation mode to the coarse mode through coagulation

in the presence of coarse dust particles. The changes of the accumulation mode composition reduce the hygroscopicity, the5

amount of accumulation mode water and the AOD. This also prolongs the atmospheric residence time of accumulation mode

pollution particles in the full emission simulation 1 compared to the dust free simulation 2, increasing the burden. In comparison

with the pollution free simulation 3, the accumulation mode burden is enhanced by the reduced coagulation with coarse mode

dust particles which are more efficiently removed in the presence of pollution (Fig. S12 in the supplement). In our simulation,

the effects that increase the accumulation mode burden generally outweigh the decrease due to more efficient deposition of10

accumulation mode dust particles. As shown in Fig. 1 (bottom), the interaction of anthropogenic pollution and dust results in

an increased annual mean accumulation mode burden over most regions. Only over some regions, most notably over Tibet, the

decreased amount of accumulation mode water results in a decreased total aerosol burden (Fig. S13 in the supplement).

The net depleting effect of dust-pollution interactions on the coarse mode aerosol burden reduces the coarse mode con-

tribution to the AOD, but the total AOD in the solar spectrum is dominated by the accumulation mode which is enhanced.15

Indeed, the annual mean effect on the AOD distribution depicted at the top of Fig. 2 clearly resembles that of the effect on the

accumulation mode shown at the bottom of Fig. 1 (Fig. 2 shows the AOD for the EMAC shortwave band from 250 to 690 nm

including the visible wavelengths, the effect on the 550 nm AOD is practically identical, see Fig. S14 in the supplement).

The effect on the aerosol absorption optical depth (AAOD) shown at the bottom of Fig. 2 is slightly negative, due to the

higher reflectance and more efficient removal of aged hygroscopic coarse mode dust. Only south of the Sahel, where the20

Saharan dust mixes with biomass burning pollution, the AAOD is increased due to the strong AOD increase.

The generally reduced absorption by mineral dust interacting with pollution is also reflected in larger single scattering

albedos (SSA) over dust dominated regions in simulation 1 compared to simulation 3 without anthropogenic emissions. Fig. 3

shows the annual mean difference of the SSA in both simulations. The SSA values have been averaged over the vertical

levels weighted with the extinction, corresponding to using SSA = 1−AAOD/AOD. Although carbonaceous components25

of the anthropogenic pollution reduce the SSA over the remaining globe, over the dust belt the SSA increases by up to 0.01.

Together with the uncertainty of the refractive index of mineral dust, neglecting this SSA increase might be responsible for

an overestimation of the atmospheric heating by dust (Balkanski et al., 2007). In the terrestrial spectrum aerosol particles are

strongly absorbing corresponding to very small SSA values which are approximated by zero in the terrestrial radiative transfer
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code. Therefore, unlike the solar radiation, the terrestrial radiation is affected by the dust-pollution interaction only via the

modified extinction.

4 Radiative forcings and heating rates

The increased AOD and decreased solar radiation absorption due to dust-pollution interactions result in a predominantly neg-

ative instantaneous direct top of the atmosphere (TOA) forcing, illustrated in Fig. 4 (top). The consequent climate cooling5

tendency affects large parts of the dust belt, from West Africa to East Asia, and attains an annual average of about −2 W/m2

south of the Sahel. Positive forcings occur over Asia, exceeding 0.5 W/m2 over India.

The distribution of the bottom of the atmosphere (BOA) forcing (Fig. 4, bottom) is similar to the that of the TOA forcing,

with an annual mean cooling maximum south of the Sahel up to about −2.5 W/m2 and a warming maximum over the Indo-

Gangetic Plain exceeding 1 W/m2.10

Consequently, the net atmospheric forcing is not very large, consistent with the moderate effect on the AAOD, but significant

(Fig. 4, centre), and depending on the region can be either negative or positive. The largest region with atmospheric cooling

extends from the Sahara over the Middle East to India, reaching an annual mean of −0.8 W/m2 over the Arabian Peninsula.

Also over the equatorial Atlantic the dust-pollution interactions result in weak but significant atmospheric cooling. In contrast,

south of the Sahel the AAOD increase (see Fig. 2) results in a positive atmospheric forcing up to 0.5 W/m2. Over extensive15

regions in Asia, the forcing is positive as well, but mostly below 0.2 W/m2.

The TOA and BOA forcings are dominated by the effect on solar radiation (shortwave, SW, Fig. S17 in the supplement).

The effect on the terrestrial radiation (longwave, LW, Fig. S18 in the supplement) contributes a forcing which is one order of

magnitude smaller than the SW forcing, both globally and regionally. For the atmospheric forcing, the LW contribution is more

relevant and depending on the region partially compensates or enhances the SW forcing. For example, the SW heating south of20

the Sahel and the SW cooling west of the Red Sea are reduced by about 30 %, whereas over the Arabian Peninsula the cooling

is enhanced by about 10 %.

Through atmospheric heating and cooling dust-pollution interactions may impact regional atmospheric dynamics. In Fig. 5

we analyse the heating rates in the main regions with negative (regions 1 and 2) and positive (regions 3 and 4) annual mean

atmospheric forcing. Over the largest region with net atmospheric cooling, extending from the Sahara over the Middle East to25

India (region 1), the heating rates show little seasonal variation with a persistent cooling, which reaches a summertime average

of −0.05 K/day over the Arabian Peninsula, with a minimum during winter. Similarly, the heating over the largest region with

7

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1104

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 3 December 2018

c© Author(s) 2018. CC BY 4.0 License.



atmospheric warming, extending from the Sahel to the Congo Basin (region 4), decreases during winter when it turns negative

below 3000 m altitude.

In contrast, over regions 2 and 3 the annual average cooling and heating are largest during one season: over the equatorial

Atlantic Ocean (region 2) the strongest cooling occurs during winter. Likewise, the heating over Asia is predominant during

summer.5

Generally, the heating takes place at higher altitudes than the cooling, at times simultaneously, thus stabilising the atmo-

sphere, which is further intensified by the predominantly negative BOA forcing that cools the surface.

When globally averaged, the regionally positive and negative forcings partially counterbalance. Nevertheless, the net annual

average global forcing at the TOA is −0.05 W/m2, representing a considerable fraction of the total dust forcing: Fig. 6

compares this forcing with that of the dust when neglecting dust-pollution interactions, i.e., the dust forcing in the pollution free10

scenario Fdust = F3−F4 which amounts to −0.08 W/m2, and the dust forcing including the pollution effects, Fdust = F1−F2,

of −0.13 W/m2. It is therefore recommended to take the interactions of dust and anthropogenic pollution into account when

assessing the dust radiative forcing as they significantly enhance the net global climate cooling effect of mineral dust.

5 Conclusions

The physicochemical interactions of mineral dust with air pollution significantly affect the optical properties, hygroscopicity15

and atmospheric residence time of dust as well as anthropogenic aerosol particles. This causes an anthropogenic climate forcing

linked to mineral dust, even though most of the dust itself is emitted from natural sources. Competing effects on the aerosol

optical properties are involved, predominantly increasing the AOD and decreasing the AAOD.

The resulting climate forcings are non-uniformly spatially distributed with regionally large positive and negative values. The

regionally negative surface forcing attains an annual mean of −2.5 W/m2 south of the Sahel, in contrast to a mean positive20

forcing of 1 W/m2 over the Indo-Gangetic Plain. The TOA forcing follows a similar pattern with slightly lower absolute

values. These forcings are associated with regionally and seasonally varying atmospheric cooling and heating, with persistent

cooling over large parts of the dust belt from North Africa, the Arabian Peninsula to Pakistan, and heating south of the Sahel,

so that a mostly stabilising impact on the atmospheric stratification is expected, which may affect the atmospheric dynamics.

Globally, dust-pollution interactions enhance the net cooling effect of mineral dust on climate. The global, annual aver-25

age TOA direct radiative forcing of −0.05 W/m2 is of similar magnitude as the total dust forcing, which underscores the

importance of a detailed account of these interactions in the assessment of aerosol radiative forcing.
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To obtain the direct forcing and to reduce the statistical noise, in the present study we have excluded feedbacks of dust and

other aerosol effects on radiation transfer and clouds. These are expected to have a significant impact on atmospheric dynamics

and climate, which will be the subject of a subsequent study.
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Figure 1. Impact of dust-pollution interaction on the coarse mode (top) and accumulation mode (bottom) aerosol burden. The more efficient

removal of aged dust particles reduces the coarse mode burden throughout the dust belt. This in turn reduces the coagulation efficiency of

coarse mode with smaller particles, increasing the accumulation mode burden especially where the dust and the African biomass burning

regions coincide. The strong hygroscopic growth of aged Saharan dust particles over the western Atlantic results in a regional maximum of the

coarse mode burden increase. Generally, the hygroscopic growth of accumulation mode particles is reduced by the interaction with mineral

dust cations manifested in a decreased accumulation mode burden over Tibet. Dots indicate regions where the effect of the dust-pollution

interaction is insignificant.
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Figure 2. Impact of dust-pollution interaction on the AOD (top) and the absorption AOD (AAOD, bottom). The AOD change reflects the

changes of the accumulation mode burden shown in Fig. 1. Over large parts of the dust belt the accumulation mode AOD is increased. In

contrast, over the Tibetan Plateau and east India the AOD decreases due to reduced hygroscopic growth of accumulation mode particles.

South of the Sahel, where the Saharan dust mixes with biomass burning pollution, the strongest accumulation mode AOD and AAOD

increase occurs. Elsewhere, the water uptake of dust and the more efficient removal of absorbing coarse dust particles combined with the

changed accumulation mode paricle radii and refractive indices tend to decrease the AAOD. Dots indicate regions where the effect of the

dust-pollution interaction is insignificant. Figure S15 in the supplement shows the corresponding plots for the four seasons.
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Figure 3. Annual mean difference of the single scattering albedo (SSA) with (simulation 1) and without (simulation 3) anthropogenic

emissions. Extinction weighted mean SSA values of each vertical column are used. The SSA for all four emission setups is shown in

Fig. S16 in the supplement. Dots indicate regions where the difference is insignificant.
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Figure 4. The instantaneous total (solar and terrestrial) direct radiative forcing of the dust-pollution interaction at the top of the atmosphere

(TOA, top), within the atmosphere (centre) and at the bottom of the atmosphere (BOA, bottom). Dots indicate regions where the effect of

the dust-pollution interaction is insignificant. The corresponding figures showing the solar and terrestrial forcings as well as seasonality are

provided in the supplement (Figs. S17 to S19).
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Figure 5. Heating rate contribution of dust-pollution interaction in comparison with the mineral dust contribution. Seasonal heating rate

profiles of four regions with negative (regions 1 and 2) and positive (regions 3 and 4) annual mean atmospheric forcing are shown (bottom).

The regions (top) are selected based on the forcings displayed in the centre of Fig. 4, using regions where the absolute forcing exceeds

0.1 W/m
2 after applying a Gaussian filter to avoid fragmentation. Three-dimensional isosurfaces of the seasonal heating rates are presented

in the supplement (Figs. S20 to S23).
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Figure 6. Global mean top of the atmosphere (TOA) forcing of the dust-pollution interaction in comparison with the mineral dust forcing

from the same EMAC simulation excluding/including the dust-pollution interaction.
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Table 1. Emission setups

Simulation 1 2 3 4

Anthropogenic emissions yes yes no no

Dust emissions yes no yes no
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