000858189 001__ 858189
000858189 005__ 20210129235855.0
000858189 0247_ $$2arXiv$$aarXiv:1811.10750
000858189 0247_ $$2Handle$$a2128/21483
000858189 0247_ $$2altmetric$$aaltmetric:51840175
000858189 037__ $$aFZJ-2018-07095
000858189 1001_ $$0P:(DE-HGF)0$$aRendon, Gumaro$$b0$$eCorresponding author
000858189 1112_ $$a36th Annual International Symposium on Lattice Field Theory$$cEast Lansing, Michigan$$d2018-07-22 - 2018-07-28$$gLattice 2018$$wUSA
000858189 245__ $$a$K \pi$ scattering and the $K^*(892)$ resonance in 2+1 flavor QCD
000858189 260__ $$aTrieste$$bSISSA$$c2019
000858189 300__ $$a7 p.
000858189 3367_ $$2ORCID$$aCONFERENCE_PAPER
000858189 3367_ $$033$$2EndNote$$aConference Paper
000858189 3367_ $$2BibTeX$$aINPROCEEDINGS
000858189 3367_ $$2DRIVER$$aconferenceObject
000858189 3367_ $$2DataCite$$aOutput Types/Conference Paper
000858189 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1579529332_30828
000858189 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000858189 4900_ $$aProceedings of Science$$vLATTICE2018
000858189 500__ $$a7 pages, 3 figures, Proceedings of the 36th Annual International Symposium on Lattice Field Theory (Lattice 2018), 22-28 July 2018, Michigan State University, East Lansing, Michigan USA
000858189 520__ $$aIn this project, we will compute the form factors relevant for $B \to K^*(\to K \pi)\ell^+\ell^-$ decays. To map the finite-volume matrix elements computed on the lattice to the infinite-volume $B \to K \pi$ matrix elements, the $K \pi$ scattering amplitude needs to be determined using L\'uscher's method. Here we present preliminary results from our calculations with $2+1$ flavors of dynamical clover fermions. We extract the $P$-wave scattering phase shifts and determine the $K^*$ resonance mass and the $K^* K \pi$ coupling for two different ensembles with pion masses of $317(2)$ and $178(2)$ MeV.
000858189 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000858189 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000858189 588__ $$aDataset connected to arXivarXiv
000858189 7001_ $$0P:(DE-HGF)0$$aLeskovec, Luka$$b1
000858189 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b2
000858189 7001_ $$0P:(DE-HGF)0$$aNegele, John$$b3
000858189 7001_ $$0P:(DE-HGF)0$$aPaul, Srijit$$b4
000858189 7001_ $$0P:(DE-HGF)0$$aPetschlies, Marcus$$b5
000858189 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew$$b6
000858189 7001_ $$0P:(DE-Juel1)171116$$aSilvi, Giorgio$$b7$$ufzj
000858189 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey$$b8
000858189 8564_ $$uhttps://juser.fz-juelich.de/record/858189/files/1811.10750.pdf$$yOpenAccess
000858189 8564_ $$uhttps://juser.fz-juelich.de/record/858189/files/1811.10750.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858189 909CO $$ooai:juser.fz-juelich.de:858189$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858189 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171116$$aForschungszentrum Jülich$$b7$$kFZJ
000858189 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000858189 9141_ $$y2019
000858189 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858189 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000858189 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858189 980__ $$acontrib
000858189 980__ $$aVDB
000858189 980__ $$acontb
000858189 980__ $$aI:(DE-Juel1)JSC-20090406
000858189 980__ $$aUNRESTRICTED
000858189 9801_ $$aFullTexts