001     858189
005     20210129235855.0
024 7 _ |a arXiv:1811.10750
|2 arXiv
024 7 _ |a 2128/21483
|2 Handle
024 7 _ |a altmetric:51840175
|2 altmetric
037 _ _ |a FZJ-2018-07095
100 1 _ |a Rendon, Gumaro
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 36th Annual International Symposium on Lattice Field Theory
|g Lattice 2018
|c East Lansing, Michigan
|d 2018-07-22 - 2018-07-28
|w USA
245 _ _ |a $K \pi$ scattering and the $K^*(892)$ resonance in 2+1 flavor QCD
260 _ _ |a Trieste
|c 2019
|b SISSA
300 _ _ |a 7 p.
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1579529332_30828
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Proceedings of Science
|v LATTICE2018
500 _ _ |a 7 pages, 3 figures, Proceedings of the 36th Annual International Symposium on Lattice Field Theory (Lattice 2018), 22-28 July 2018, Michigan State University, East Lansing, Michigan USA
520 _ _ |a In this project, we will compute the form factors relevant for $B \to K^*(\to K \pi)\ell^+\ell^-$ decays. To map the finite-volume matrix elements computed on the lattice to the infinite-volume $B \to K \pi$ matrix elements, the $K \pi$ scattering amplitude needs to be determined using L\'uscher's method. Here we present preliminary results from our calculations with $2+1$ flavors of dynamical clover fermions. We extract the $P$-wave scattering phase shifts and determine the $K^*$ resonance mass and the $K^* K \pi$ coupling for two different ensembles with pion masses of $317(2)$ and $178(2)$ MeV.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
588 _ _ |a Dataset connected to arXivarXiv
700 1 _ |a Leskovec, Luka
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meinel, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Negele, John
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Paul, Srijit
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Petschlies, Marcus
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Pochinsky, Andrew
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Silvi, Giorgio
|0 P:(DE-Juel1)171116
|b 7
|u fzj
700 1 _ |a Syritsyn, Sergey
|0 P:(DE-HGF)0
|b 8
856 4 _ |u https://juser.fz-juelich.de/record/858189/files/1811.10750.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/858189/files/1811.10750.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:858189
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171116
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21