Hauptseite > Publikationsdatenbank > $K \pi$ scattering and the $K^*(892)$ resonance in 2+1 flavor QCD > print |
001 | 858189 | ||
005 | 20210129235855.0 | ||
024 | 7 | _ | |a arXiv:1811.10750 |2 arXiv |
024 | 7 | _ | |a 2128/21483 |2 Handle |
024 | 7 | _ | |a altmetric:51840175 |2 altmetric |
037 | _ | _ | |a FZJ-2018-07095 |
100 | 1 | _ | |a Rendon, Gumaro |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a 36th Annual International Symposium on Lattice Field Theory |g Lattice 2018 |c East Lansing, Michigan |d 2018-07-22 - 2018-07-28 |w USA |
245 | _ | _ | |a $K \pi$ scattering and the $K^*(892)$ resonance in 2+1 flavor QCD |
260 | _ | _ | |a Trieste |c 2019 |b SISSA |
300 | _ | _ | |a 7 p. |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1579529332_30828 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Proceedings of Science |v LATTICE2018 |
500 | _ | _ | |a 7 pages, 3 figures, Proceedings of the 36th Annual International Symposium on Lattice Field Theory (Lattice 2018), 22-28 July 2018, Michigan State University, East Lansing, Michigan USA |
520 | _ | _ | |a In this project, we will compute the form factors relevant for $B \to K^*(\to K \pi)\ell^+\ell^-$ decays. To map the finite-volume matrix elements computed on the lattice to the infinite-volume $B \to K \pi$ matrix elements, the $K \pi$ scattering amplitude needs to be determined using L\'uscher's method. Here we present preliminary results from our calculations with $2+1$ flavors of dynamical clover fermions. We extract the $P$-wave scattering phase shifts and determine the $K^*$ resonance mass and the $K^* K \pi$ coupling for two different ensembles with pion masses of $317(2)$ and $178(2)$ MeV. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)PHD-NO-GRANT-20170405 |x 1 |c PHD-NO-GRANT-20170405 |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405) |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Leskovec, Luka |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Negele, John |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Paul, Srijit |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Petschlies, Marcus |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pochinsky, Andrew |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Silvi, Giorgio |0 P:(DE-Juel1)171116 |b 7 |u fzj |
700 | 1 | _ | |a Syritsyn, Sergey |0 P:(DE-HGF)0 |b 8 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858189/files/1811.10750.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/858189/files/1811.10750.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:858189 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)171116 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|