000858207 001__ 858207
000858207 005__ 20210129235900.0
000858207 0247_ $$2Handle$$a2128/20339
000858207 037__ $$aFZJ-2018-07113
000858207 041__ $$aEnglish
000858207 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj
000858207 1112_ $$aBad Honnef Physics School on Quantum Technologies$$cBad Honnef$$d2018-08-05 - 2018-08-10$$wGermany
000858207 245__ $$aTesting quantum fault tolerance on small systems
000858207 260__ $$c2018
000858207 3367_ $$033$$2EndNote$$aConference Paper
000858207 3367_ $$2BibTeX$$aINPROCEEDINGS
000858207 3367_ $$2DRIVER$$aconferenceObject
000858207 3367_ $$2ORCID$$aCONFERENCE_POSTER
000858207 3367_ $$2DataCite$$aOutput Types/Conference Poster
000858207 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1544103019_16464$$xOther
000858207 520__ $$aA functional gate-based quantum computer requires a very high level of precision to implement quantum gates. As current devices get bigger, it proves difficult to maintain this level of control. To overcome such limitations, the most prominent solution is provided by the theory of quantum fault tolerance. However, it has still remained an open question how much a practical application can profit from the theory. For this reason, we extensively test a recent protocol to demonstrate quantum fault tolerance on real-time simulations and on the IBM Q Experience. We find that the fault-tolerant scheme provides a systematic way to improve the results when inherent control and measurement errors are dominant. However, the scheme fails to satisfy the criterion for fault tolerance when decoherence effects become important.
000858207 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000858207 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000858207 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b1$$ufzj
000858207 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2$$ufzj
000858207 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b3
000858207 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj
000858207 8564_ $$uhttps://juser.fz-juelich.de/record/858207/files/poster.pdf$$yOpenAccess
000858207 8564_ $$uhttps://juser.fz-juelich.de/record/858207/files/poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858207 909CO $$ooai:juser.fz-juelich.de:858207$$pdriver$$pVDB$$popen_access$$popenaire
000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ
000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b1$$kFZJ
000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ
000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ
000858207 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000858207 9141_ $$y2018
000858207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858207 920__ $$lyes
000858207 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000858207 980__ $$aposter
000858207 980__ $$aVDB
000858207 980__ $$aUNRESTRICTED
000858207 980__ $$aI:(DE-Juel1)JSC-20090406
000858207 9801_ $$aFullTexts