000858207 001__ 858207 000858207 005__ 20210129235900.0 000858207 0247_ $$2Handle$$a2128/20339 000858207 037__ $$aFZJ-2018-07113 000858207 041__ $$aEnglish 000858207 1001_ $$0P:(DE-Juel1)167542$$aWillsch, Dennis$$b0$$eCorresponding author$$ufzj 000858207 1112_ $$aBad Honnef Physics School on Quantum Technologies$$cBad Honnef$$d2018-08-05 - 2018-08-10$$wGermany 000858207 245__ $$aTesting quantum fault tolerance on small systems 000858207 260__ $$c2018 000858207 3367_ $$033$$2EndNote$$aConference Paper 000858207 3367_ $$2BibTeX$$aINPROCEEDINGS 000858207 3367_ $$2DRIVER$$aconferenceObject 000858207 3367_ $$2ORCID$$aCONFERENCE_POSTER 000858207 3367_ $$2DataCite$$aOutput Types/Conference Poster 000858207 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1544103019_16464$$xOther 000858207 520__ $$aA functional gate-based quantum computer requires a very high level of precision to implement quantum gates. As current devices get bigger, it proves difficult to maintain this level of control. To overcome such limitations, the most prominent solution is provided by the theory of quantum fault tolerance. However, it has still remained an open question how much a practical application can profit from the theory. For this reason, we extensively test a recent protocol to demonstrate quantum fault tolerance on real-time simulations and on the IBM Q Experience. We find that the fault-tolerant scheme provides a systematic way to improve the results when inherent control and measurement errors are dominant. However, the scheme fails to satisfy the criterion for fault tolerance when decoherence effects become important. 000858207 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000858207 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1 000858207 7001_ $$0P:(DE-Juel1)167543$$aWillsch, Madita$$b1$$ufzj 000858207 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b2$$ufzj 000858207 7001_ $$0P:(DE-HGF)0$$aDe Raedt, Hans$$b3 000858207 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b4$$ufzj 000858207 8564_ $$uhttps://juser.fz-juelich.de/record/858207/files/poster.pdf$$yOpenAccess 000858207 8564_ $$uhttps://juser.fz-juelich.de/record/858207/files/poster.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000858207 909CO $$ooai:juser.fz-juelich.de:858207$$pdriver$$pVDB$$popen_access$$popenaire 000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167542$$aForschungszentrum Jülich$$b0$$kFZJ 000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167543$$aForschungszentrum Jülich$$b1$$kFZJ 000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b2$$kFZJ 000858207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b4$$kFZJ 000858207 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000858207 9141_ $$y2018 000858207 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000858207 920__ $$lyes 000858207 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000858207 980__ $$aposter 000858207 980__ $$aVDB 000858207 980__ $$aUNRESTRICTED 000858207 980__ $$aI:(DE-Juel1)JSC-20090406 000858207 9801_ $$aFullTexts