
Testing quantum fault tolerance on small systems

Dennis Willsch^{1,2}, Madita Nocon^{1,2}, Fengping Jin¹, Hans De Raedt³, Kristel Michielsen^{1,2}

- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
 - ² RWTH Aachen University, D-52056 Aachen, Germany
- ³ Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

Fault-tolerant quantum computation

In fault-tolerant (FT) protocols, qubit states and gates are logically encoded in a larger space. We consider a code in which 2 logical qubits are encoded in 4+1 physical qubits.

Criterion for success: [1]

 $D_{\rm enc} < D_{\rm bare}$ All encoded circuits of some representative set perform better than the corresponding bare, unencoded circuits

$$D_{\text{bare/enc}} = \frac{1}{2} \sum_{q_0 q_1} \left| p_{q_0 q_1}^{\text{bare/enc}} - p_{q_0 q_1}^{\text{theory}} \right|$$

System 1: Spin qubits in an environment

The first system consists of 5 spin qubits coupled with strength λ to an environment with N_E two-level systems prepared at inverse temperature β .

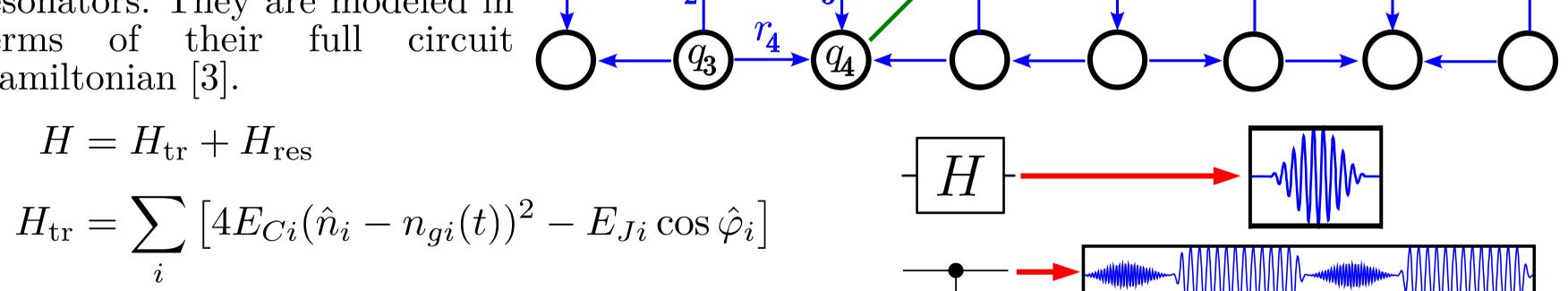
$$H = H_Q + H_E + \lambda H_{QE}$$

$$H_Q = -\sum_{n=0}^4 \sum_{\alpha=x,z} h_n^{\alpha} \sigma_n^{\alpha} - \sum_{n,m=0}^4 J_{nm}^x \sigma_n^x \sigma_m^x$$

$$H_E = -\sum_{n=5}^{N_E+4} \sum_{\alpha=x,y,z} J_n^{\alpha} \sigma_n^{\alpha} \sigma_{n+1}^{\alpha}$$

$$H_{QE} = -\sum_{n=0}^4 \sum_{\alpha=x,y,z} J_{nj_n}^{\alpha} \sigma_n^{\alpha} \sigma_{j_n}^{\alpha}$$

The system is simulated by numerically solving the time-dependent Schrödinger equation (TDSE) to machine precision using the Chebyshev algorithm [2]. Quantum gates are implemented by choosing suitable parameters for H_o .

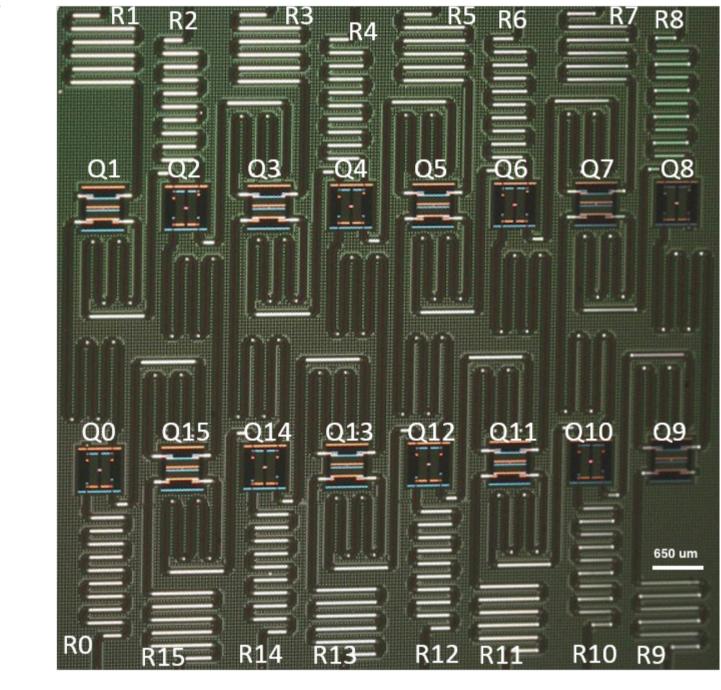

$$i\frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$

The model is designed to test the performance of the FT protocol exclusively in the presence of decoherence errors due to interaction with the environment. By construction, there are no control or measurement errors in this system.

System 2: Transmon qubits

The second system consists of 5 transmon qubits and 6 coupling resonators. They are modeled in terms of full their Hamiltonian [3].

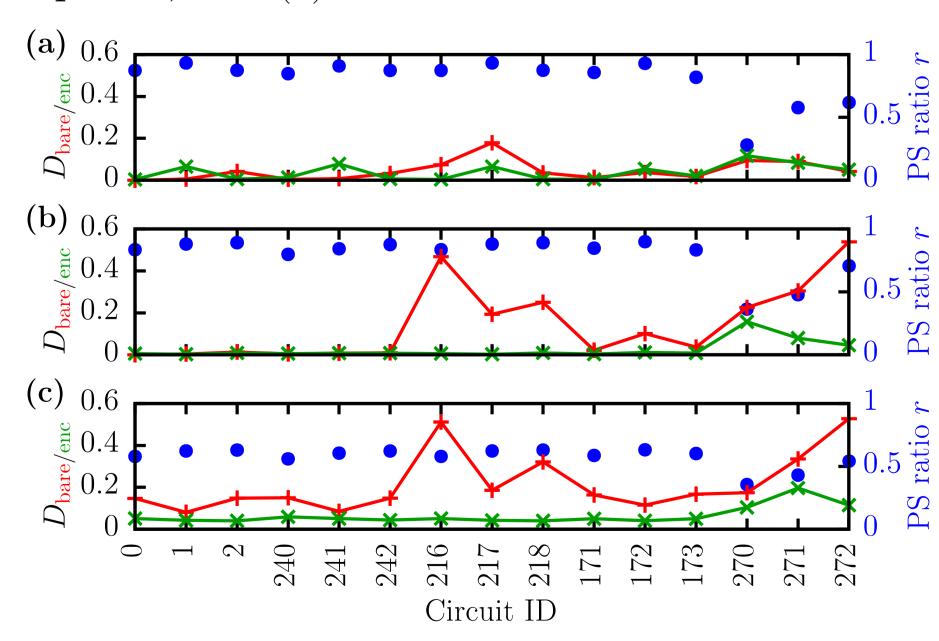
 $H_{\text{res}} = \sum \Omega_r \hat{a}_r^{\dagger} \hat{a}_r + \sum G_{ri} \hat{n}_i (\hat{a}_r + \hat{a}_r^{\dagger})$


Quantum gates are implemented by the optimized microwave pulses used in the IBM Q [4]. Single-qubit gates use Gaussian envelopes, and two-qubit gates use the echoed cross-resonance scheme [5]. The model is dominated by inherent control errors from the pulses [6]

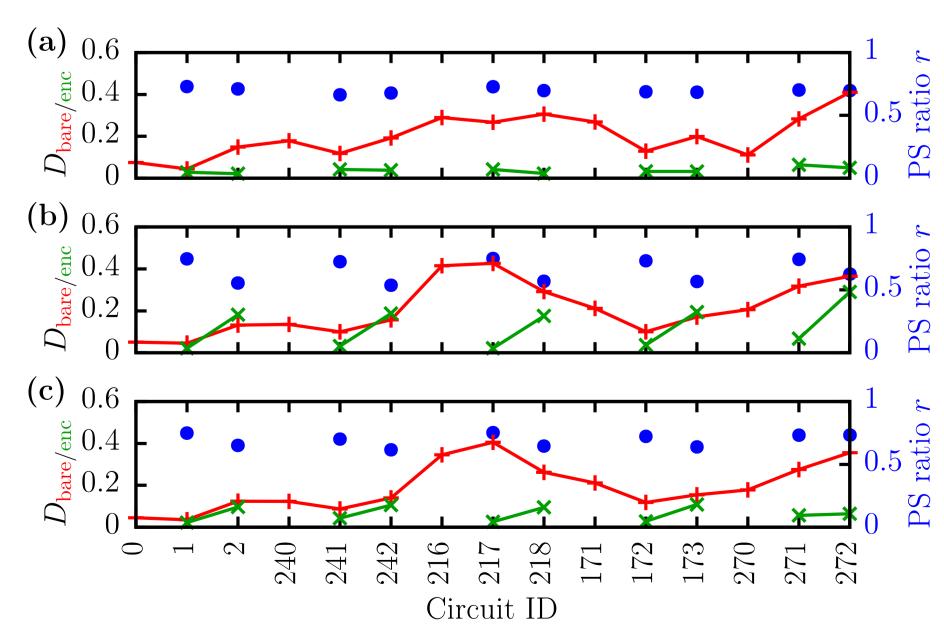
$$n_{gi}(t) = \Omega_{G}(t)\cos(2\pi ft - \gamma) + \beta_{X}\dot{\Omega}_{G}(t)\cos(2\pi ft - \gamma - \frac{\pi}{2})$$

The system is simulated by solving the TDSE with the Suzuki-Trotter algorithm [7].

System 3: IBM 16-qubit device


The third system is a subset of the physical 16-qubit device ibmqx5 [4].

protocol is implemented using the(Q4,Q3,Q2,Q15,Q14) and its performance is tested against the inherent control and measurement errors in the processor [6,8].


System 1: (a) $\lambda = 0.01$, (b) $\lambda = 0.1$, and (c) $\lambda = 0.2$. The results are for $N_E = 20$ and $\beta = 1$. $\frac{5}{6}$ 0.4 $Q_{\text{bare}} = 0.2$ $\frac{5}{6}$ 0.2 D_{L} (c) 0.6 $\frac{1}{2}$ 0.4 218 217 171 Circuit ID Circuit ID0 - 2 $X1 X1 X1 X1 X1 |i\rangle$ 240 - 242 $CZ CZ CZ CZ CZ |i\rangle$ 216-218 CZ X1 X2 Z1 Z1 X1 X1 Z1 Z1 Z2 $|i\rangle$ 171 - 173HHS CZ HHS CZ HHS CZ HHS CZ $|i\rangle$ 270 - 272

System 2: (a) optimized pulses, (b) *f*-optimized pulses, and (c) additional measurement error.

Conclusion: The FT protocol does not satisfy fault tolerance criterion when for the system. dominate decoherence errors However, it systematically improves the results for inherent control and measurement errors present in transmon processors [9].

System 3: (a) April 3, 2018 (b) April 9, 2018, and (c) April 19, 2018. Encoded $|\overline{00}\rangle$ cannot be tested.

[5] Sheldon et al. *Phys. Rev. A.* **93**, 060302 (2016) [6] Willsch et al. *Phys. Rev. A* **96**, 062302 (2017) [7] De Raedt. *Comp. Phys. Rep.* **7**, 1 (1987) [2] Tal-Ezer et al. *J. Chem. Phys.* **81**, 3967 (1984)

[3] Koch et al. *Phys. Rev. A* **76**, 042319 (2007) [4] IBM Q, https://www.research.ibm.com/ibm-q

References:

[1] Gottesman, arXiv:1610.03507

[8] Michielsen et al. Comp. Phys. Comm. 220, 44 (2017) [9] Willsch et al., arXiv:1805.05227