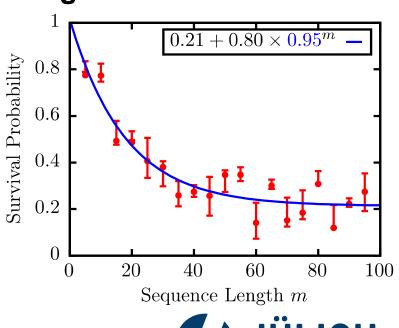


Using the fidelity and other metrics to measure gate performance

05.04.2018 | DENNIS WILLSCH

Willsch et al., Phys. Rev. A 96, 062302 (2017)


What is the fidelity?

- Measure for gate performance
- ◆ Idea: Average performance over random states

Experiment: Randomized Benchmarking

Emerson *et al.*, J. Opt. B **7**, S347 (2005) Magesan *et al.*, Phys. Rev. A **85**, 042311 (2012)

- Fit exponential decay
- Produces a single number
- Scales well to many qubits
- What is the problem?

Problems with RB and the fidelity

- ◆ RB does <u>not</u> measure the fidelity
 - Tiny error in frequency: $F_{\rm avg}=0.999\Leftrightarrow {\rm RB:}~0.99999$ Proctor et al., Phys. Rev. Lett. 119, 130502 (2017)
- ◆ Fidelity does <u>not</u> give the error rate for fault-tolerance
 - ➤ IBM: "fidelity above 0.995 suffices" Chow et al., Phys. Rev. Lett. 109, 060501 (2012)
 - ➤ Google: "fault-tolerance threshold passed" Barends et al., Nature 508, 500 (2014)
 - ightharpoonup Required for two-qubit gate: $F_{\rm avg} > 0.999995$

Sanders et al., New J. Phys. 1, 012002 (2016)

- Are other metrics better?
- Can they actually predict gate performance?

Other gate metrics

$$\mathcal{G}_{ac}(|\psi\rangle\langle\psi|) = M |\psi\rangle\langle\psi| M^{\dagger}$$
$$\mathcal{G}_{id}(|\psi\rangle\langle\psi|) = U |\psi\rangle\langle\psi| U^{\dagger}$$

Average Gate Fidelity "statistical average"

$$F_{\text{avg}} = \int d|\psi\rangle \langle \psi| \mathcal{G}_{ac}(\mathcal{G}_{id}^{-1}(|\psi\rangle\langle\psi|)) |\psi\rangle$$

Nielsen, Phys. Lett. A 303, 249 (2002)

Diamond Norm "worst-case error"

$$\eta_{\Diamond} = \frac{1}{2} \left\| \mathcal{G}_{ac} \circ \mathcal{G}_{id}^{-1} - \mathbb{1} \right\|_{\Diamond}$$

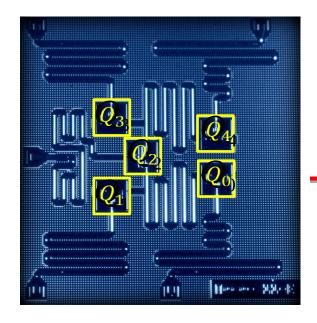
Kitaev, Russian Mathematical Surveys 52, 1191 (1997)

Unitarity "quantifies leakage"

$$u = \frac{d}{d-1} \int d|\psi\rangle \operatorname{Tr} \left[\mathcal{G}'_{ac}(|\psi\rangle\langle\psi|)^{\dagger} \mathcal{G}'_{ac}(|\psi\rangle\langle\psi|) \right]$$

Wallman et al., New J. Phys. 17, 113020 (2015)

Simulation of the hardware


Hardware: IBMQX

IBM Quantum Experience

Simulation: TDSE

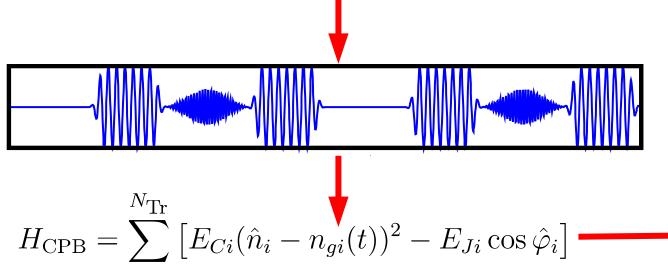
Time-dependent

Schrödinger Equation

$$i\frac{\partial}{\partial t} |\Psi(t)\rangle = H(t) |\Psi(t)\rangle$$

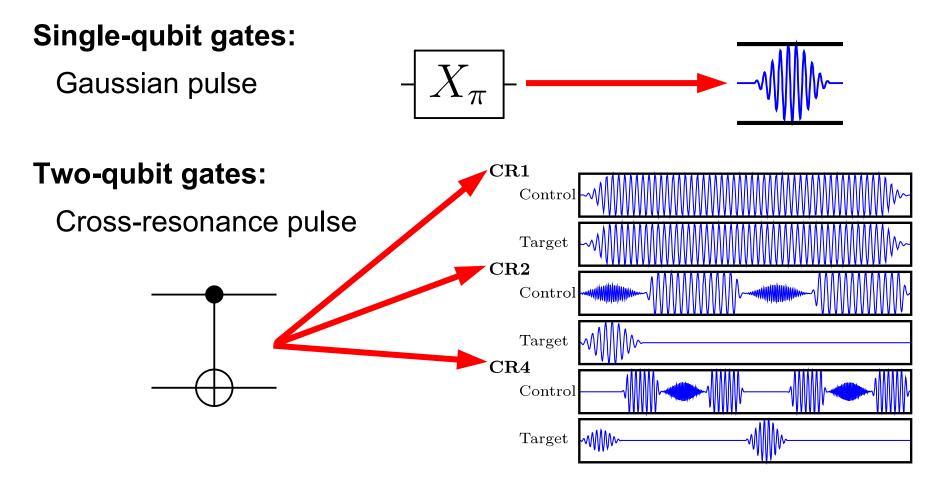
State of the qubits

Simulation of the hardware


How to run a quantum circuit?

$$|0\rangle - X_{\pi} - H - H - Z_{\vartheta_1} - H - I$$

$$|0\rangle - X_{\pi} - H - I$$


$$|0\rangle - H - I$$

Each gate → Voltage pulse

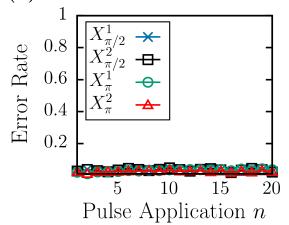
Simulation of the hardware

Pulses are optimized to be as good as theoretically possible!

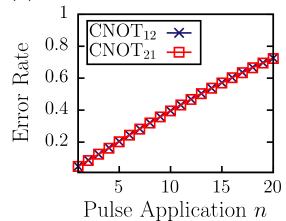
Page 7

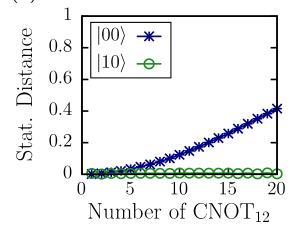
Results: Fidelity

Gate	$F_{ m avg}$				
$X^1_{\pi/2}$	0.9946				
$X_{\pi/2}^{2^{'}}$	0.9942				
X_{π}^{1}	0.9949				
X_{π}^2	0.9943				
$\overline{\mathbf{CR2}_{12}}$	0.9943				
$\mathbf{CR2}_{21}$	0.9947				
Fidelity is					
always the same					


Page 8

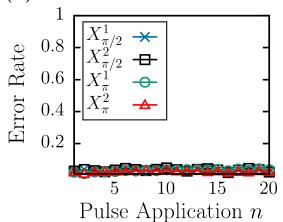
Results: Fidelity


Gate	$F_{ m avg}$
$\overline{X^1_{\pi/2}}$	0.9946
$X_{\pi/2}^2$	0.9942
X_{π}^{1}	0.9949
X_{π}^2	0.9943
$\overline{\mathbf{CR2}_{12}}$	0.9943
$\mathbf{CR2}_{21}$	0.9947
	/

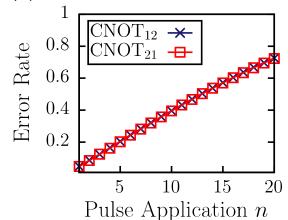

(a) X simulation

(c) CR2 simulation

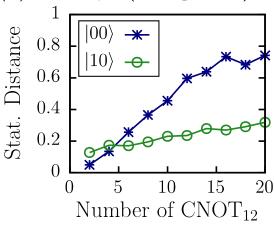
(c) CR2 simulation



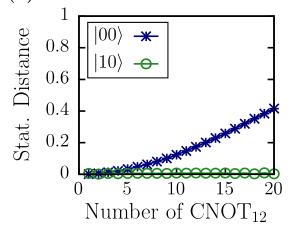
Results: Fidelity


Gate	$F_{ m avg}$
$\overline{X^1_{\pi/2}}$	0.9946
$X_{\pi/2}^2$	0.9942
X_{π}^{1}	0.9949
X_{π}^2	0.9943
$\overline{ ext{CR2}_{12}}$	0.9943
$\mathbf{CR2}_{21}$	0.9947
	/

(a) X simulation

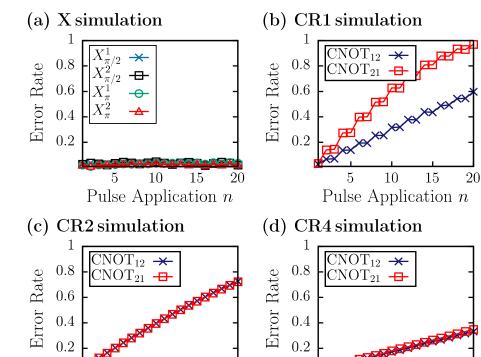


(c) CR2 simulation



Experiment

(a) IBMQX (using CR2)


(c) CR2 simulation

Results: Other gates and metrics

	Gate	$F_{\rm avg}$	η_{\lozenge}	u
	$X^1_{\pi/2}$	0.9946	0.027	0.990
	$X_{\pi/2}^{2^{'}}$	0.9942	0.028	0.989
	X_{π}^{1}	0.9949	0.020	0.990
	X_{π}^2	0.9943	0.023	0.989
3→	$\overline{ extbf{CR1}_{12}}$	0.9842	0.029	0.969
1→	$\mathbf{CR1}_{21}$	0.9951	0.033	0.991
	$\overline{\mathbf{CR2}_{12}}$	0.9943	0.048	0.991
	$\mathbf{CR2}_{21}$	0.9947	0.048	0.992
2	$\overline{\mathbf{CR4}_{12}}$	0.9934	0.049	0.989
	$ ext{CR4}_{21}$	0.9946	0.044	0.991

- 1) Best fidelity **BUT** worst performance
- 2) Worst diamond norm **BUT** better performance
- 3) Unitarity: helps theoretically **BUT** not practically

20

Pulse Application n

15

10 Pulse Application n

20

Conclusions

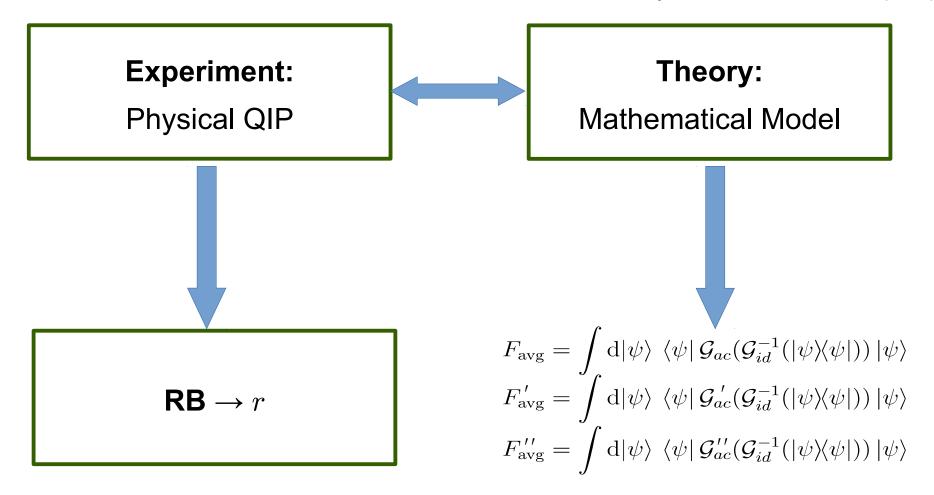
- ✔ RB is a stable, scalable procedure for an initial assessment
- RB does not measure the fidelity Proctor et al., Phys. Rev. Lett. 119, 130502 (2017)
- **X** RB conceals systematic errors (→randomization)
 - → Don't trust a single, <u>statistical</u> number
- Fidelity is <u>not</u> sufficient for fault-tolerance

Sanders et al., New J. Phys. 1, 012002 (2016)

Willsch et al., Phys. Rev. A **96**, 062302 (2017)

- None of the gate metrics can reliably predict gate performance
 - for repeated applications
 - for use in a quantum algorithm
- → Repeat gate pulses
- →Run specific (identity) circuits for benchmarking

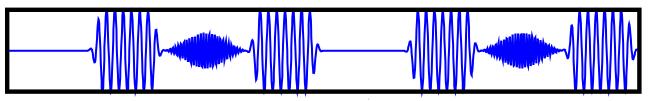
Michielsen et al., Comp. Phys. Comm. 220, 44 (2017)



THANK YOU FOR YOUR ATTENTION

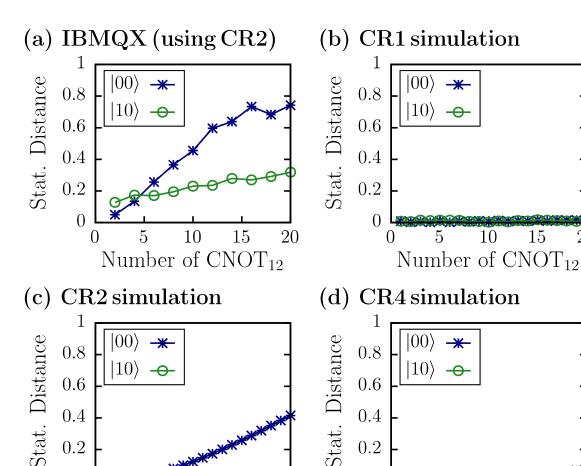
Why can't RB measure the fidelity?

Proctor et al., Phys. Rev. Lett. 119, 130502 (2017)



Optimization of gate pulses

Willsch et al., Phys. Rev. A 96, 062302 (2017)


◆ Many parameters → multidimensional optimization

- With gradients: FR, PR, DFP / BFGS (quasi-Newton)
- Gradient-free: Nelder-Mead (downhill simplex), Powell's
- ◆ Machine learning → neural networks
- ... many other complex ideas
- ✓ Can improve the fidelity a little bit
- Does not necessarily improve the gates in real applications!
- →Our observation: Best performance obtained by sticking to the model and fine-tune parameters with Nelder-Mead

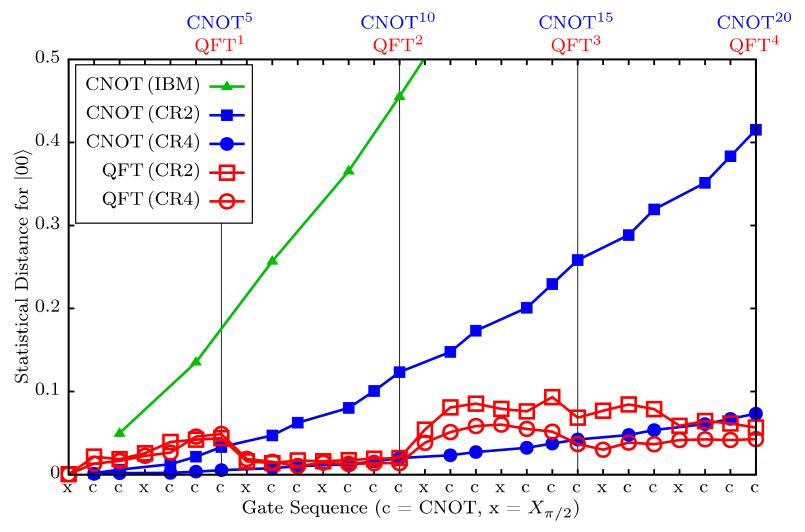
Repeated CNOT Gates

10

10

Number of $CNOT_{12}$

5


15

15

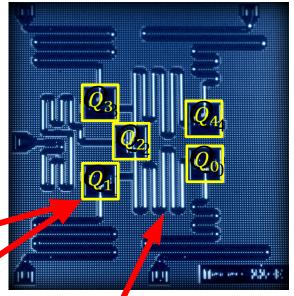
Number of $CNOT_{12}$

0

CNOT in QFT

Simulation of the Hardware

Hardware → Hamiltonian

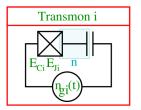

$$H = H_{\text{CPB}} + H_{\text{Res}} + H_{\text{CC}}$$

Qubits: Transmons

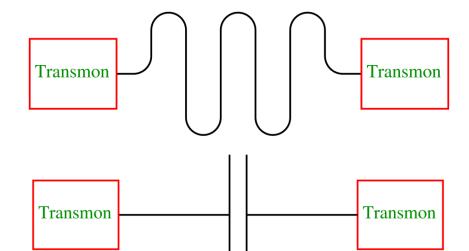
$$H_{\text{CPB}} = \sum_{i=1}^{N_{\text{Tr}}} \left[E_{Ci} (\hat{n}_i - n_{gi}(t))^2 - E_{Ji} \cos \hat{\varphi}_i \right]$$

Coupling: Resonators

$$H_{\text{Res}} = \omega_r \hat{a}^{\dagger} \hat{a} + \sum_{i=1}^{N_{\text{Tr}}} g_i \hat{n}_i (\hat{a} + \hat{a}^{\dagger})$$



IBMQX Transmon System


$$H = H_{\text{CPB}} + H_{\text{Res}} + H_{\text{CC}}$$

Transmon	$E_{Ci}/2\pi$	$E_{Ji}/2\pi$	$\omega_i/2\pi$	$\omega_r/2\pi$	$g_i/2\pi$
1	1.204	13.349	5.350	7	0.07
2	1.204	12.292	5.120	7	0.07

$$H_{\text{CPB}} = \sum_{i=1}^{N_{\text{Tr}}} \left[E_{Ci} (\hat{n}_i - n_{gi}(t))^2 - E_{Ji} \cos \hat{\varphi}_i \right]$$

$$H_{\text{Res}} = \omega_r \hat{a}^{\dagger} \hat{a} + \sum_{i=1}^{N_{\text{Tr}}} g_i \hat{n}_i (\hat{a} + \hat{a}^{\dagger})$$

$$H_{\rm CC} = \sum_{1 \le i < j \le N_{\rm Tr}} E_{Ci,Cj} \hat{n}_i \hat{n}_j$$

