001     858209
005     20210129235900.0
024 7 _ |a 2128/20337
|2 Handle
037 _ _ |a FZJ-2018-07115
041 _ _ |a English
100 1 _ |a Willsch, Madita
|0 P:(DE-Juel1)167543
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Bad Honnef Physics School on Quantum Technologies
|c Bad Honnef
|d 2018-08-05 - 2018-08-10
|w Germany
245 _ _ |a Superconducting flux qubits compared to ideal two-level systems as building blocks for quantum annealers
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1544102905_16463
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Quantum annealers provide a promising approach for solving optimization problems.The theory of quantum annealing is fundamentally different from gate-based quantum computing: In quantum annealing, the system is prepared in a known ground state of an initial Hamiltonian, then this Hamiltonian is adiabatically transformed into the final Hamiltonian whose ground state corresponds to the solution of the given problem.Quantum annealing works well in theory if the qubits can be modeled as two-level systems. However, in real devices, the qubits are not based on perfect two-level systems, but on a two-dimensional subspace of a larger system. This makes approximations in analytic calculations unavoidable.With a simulation utilizing the Suzuki-Trotter product-formula approach to solve the time-dependent Schrödinger equation, the time-evolution of the full state of such a device based on superconducting flux qubits is investigated and compared to the ideal two-level system.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
|u fzj
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
|u fzj
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 4
|u fzj
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/858209/files/bad_honnef.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/858209/files/bad_honnef.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:858209
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21