000858220 001__ 858220
000858220 005__ 20230426083203.0
000858220 0247_ $$2doi$$a10.1103/PhysRevB.98.235110
000858220 0247_ $$2ISSN$$a0163-1829
000858220 0247_ $$2ISSN$$a0556-2805
000858220 0247_ $$2ISSN$$a1050-2947
000858220 0247_ $$2ISSN$$a1094-1622
000858220 0247_ $$2ISSN$$a1095-3795
000858220 0247_ $$2ISSN$$a1098-0121
000858220 0247_ $$2ISSN$$a1538-4489
000858220 0247_ $$2ISSN$$a1550-235X
000858220 0247_ $$2ISSN$$a2469-9950
000858220 0247_ $$2ISSN$$a2469-9969
000858220 0247_ $$2Handle$$a2128/20341
000858220 0247_ $$2WOS$$aWOS:000452322800003
000858220 0247_ $$2altmetric$$aaltmetric:44464931
000858220 037__ $$aFZJ-2018-07120
000858220 082__ $$a530
000858220 1001_ $$0P:(DE-HGF)0$$aSánchez-Barriga, J.$$b0$$eCorresponding author
000858220 245__ $$aAnomalous behavior of the electronic structure of ( Bi 1 − x In x ) 2 Se 3 across the quantum phase transition from topological to trivial insulator
000858220 260__ $$aWoodbury, NY$$bInst.$$c2018
000858220 3367_ $$2DRIVER$$aarticle
000858220 3367_ $$2DataCite$$aOutput Types/Journal article
000858220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648460887_2654
000858220 3367_ $$2BibTeX$$aARTICLE
000858220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858220 3367_ $$00$$2EndNote$$aJournal Article
000858220 520__ $$aUsing spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1−xInx)2Se3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x=0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.
000858220 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000858220 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000858220 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2
000858220 542__ $$2Crossref$$i2018-12-05$$uhttps://link.aps.org/licenses/aps-default-license
000858220 588__ $$aDataset connected to CrossRef
000858220 7001_ $$0P:(DE-Juel1)145750$$aAguilera, I.$$b1$$ufzj
000858220 7001_ $$0P:(DE-HGF)0$$aYashina, L. V.$$b2
000858220 7001_ $$0P:(DE-HGF)0$$aTsukanova, D. Y.$$b3
000858220 7001_ $$0P:(DE-HGF)0$$aFreyse, F.$$b4
000858220 7001_ $$0P:(DE-HGF)0$$aChaika, A. N.$$b5
000858220 7001_ $$0P:(DE-HGF)0$$aCallaert, C.$$b6
000858220 7001_ $$0P:(DE-HGF)0$$aAbakumov, A. M.$$b7
000858220 7001_ $$0P:(DE-HGF)0$$aHadermann, J.$$b8
000858220 7001_ $$0P:(DE-HGF)0$$aVarykhalov, A.$$b9
000858220 7001_ $$0P:(DE-HGF)0$$aRienks, E. D. L.$$b10
000858220 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b11$$ufzj
000858220 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b12$$ufzj
000858220 7001_ $$0P:(DE-HGF)0$$aRader, O.$$b13
000858220 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.98.235110$$bAmerican Physical Society (APS)$$d2018-12-05$$n23$$p235110$$tPhysical Review B$$v98$$x2469-9950$$y2018
000858220 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.98.235110$$gVol. 98, no. 23, p. 235110$$n23$$p235110$$tPhysical review / B$$v98$$x2469-9950$$y2018
000858220 8564_ $$uhttps://juser.fz-juelich.de/record/858220/files/PhysRevB.98.235110.pdf$$yOpenAccess
000858220 8564_ $$uhttps://juser.fz-juelich.de/record/858220/files/PhysRevB.98.235110.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000858220 909CO $$ooai:juser.fz-juelich.de:858220$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000858220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145750$$aForschungszentrum Jülich$$b1$$kFZJ
000858220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b11$$kFZJ
000858220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b12$$kFZJ
000858220 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000858220 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000858220 9141_ $$y2018
000858220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858220 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858220 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000858220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000858220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000858220 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000858220 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858220 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858220 920__ $$lyes
000858220 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000858220 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000858220 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000858220 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000858220 980__ $$ajournal
000858220 980__ $$aVDB
000858220 980__ $$aI:(DE-Juel1)IAS-1-20090406
000858220 980__ $$aI:(DE-Juel1)PGI-1-20110106
000858220 980__ $$aI:(DE-82)080009_20140620
000858220 980__ $$aI:(DE-82)080012_20140620
000858220 980__ $$aUNRESTRICTED
000858220 9801_ $$aFullTexts
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.045302
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08916
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1167733
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.257004
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.165113
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevX.4.011046
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.117601
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.256810
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pssr.201206469
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.256811
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms6349
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1189924
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10559
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.245418
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.076801
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.045312
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2647
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms7870
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1201607
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.186403
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.115150
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.115106
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41467-017-01204-0
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2058
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.186804
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jcrysgro.2009.03.031
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.195413
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1144839
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.125102
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.085144
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.165136
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.045206
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ic9812858
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.11.016
000858220 999C5 $$1S. Hüfner$$2Crossref$$9-- missing cx lookup --$$a10.1007/3-540-68133-7$$y2007
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0268-1242/31/9/095010
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00544220
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.14372
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(03)00103-X
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0025-5408(95)00185-9
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.88.224202
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.materresbull.2013.03.002
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.121111
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.266806
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.109.097601
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.216401
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.266801
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.216803
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1689
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms4841
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.51.541
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.115433
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.121103
000858220 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.206402