000858239 001__ 858239
000858239 005__ 20240712112943.0
000858239 0247_ $$2doi$$a10.1038/s41563-018-0088-3
000858239 0247_ $$2ISSN$$a1476-1122
000858239 0247_ $$2ISSN$$a1476-4660
000858239 0247_ $$2pmid$$apmid:29867166
000858239 0247_ $$2WOS$$aWOS:000436341400012
000858239 0247_ $$2altmetric$$aaltmetric:43361705
000858239 037__ $$aFZJ-2018-07139
000858239 082__ $$a610
000858239 1001_ $$00000-0002-9016-2155$$aFaisal, Firas$$b0
000858239 245__ $$aElectrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes
000858239 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000858239 3367_ $$2DRIVER$$aarticle
000858239 3367_ $$2DataCite$$aOutput Types/Journal article
000858239 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552649814_21969
000858239 3367_ $$2BibTeX$$aARTICLE
000858239 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000858239 3367_ $$00$$2EndNote$$aJournal Article
000858239 520__ $$aElectrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1,2,3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
000858239 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000858239 536__ $$0G:(DE-Juel1)jara0176_20171101$$aAb initio study of amorphous Sb (jara0176_20171101)$$cjara0176_20171101$$fAb initio study of amorphous Sb$$x1
000858239 588__ $$aDataset connected to CrossRef
000858239 7001_ $$0P:(DE-HGF)0$$aStumm, Corinna$$b1
000858239 7001_ $$0P:(DE-HGF)0$$aBertram, Manon$$b2
000858239 7001_ $$0P:(DE-HGF)0$$aWaidhas, Fabian$$b3
000858239 7001_ $$0P:(DE-HGF)0$$aLykhach, Yaroslava$$b4
000858239 7001_ $$0P:(DE-Juel1)168567$$aCherevko, Serhiy$$b5
000858239 7001_ $$0P:(DE-HGF)0$$aXiang, Feifei$$b6
000858239 7001_ $$0P:(DE-HGF)0$$aAmmon, Maximilian$$b7
000858239 7001_ $$0P:(DE-HGF)0$$aVorokhta, Mykhailo$$b8
000858239 7001_ $$0P:(DE-HGF)0$$aŠmíd, Břetislav$$b9
000858239 7001_ $$00000-0003-2909-9422$$aSkála, Tomáš$$b10
000858239 7001_ $$0P:(DE-HGF)0$$aTsud, Nataliya$$b11
000858239 7001_ $$0P:(DE-HGF)0$$aNeitzel, Armin$$b12
000858239 7001_ $$0P:(DE-HGF)0$$aBeranová, Klára$$b13
000858239 7001_ $$00000-0002-5416-7354$$aPrince, Kevin C.$$b14
000858239 7001_ $$0P:(DE-HGF)0$$aGeiger, Simon$$b15
000858239 7001_ $$00000-0001-6315-0637$$aKasian, Olga$$b16
000858239 7001_ $$0P:(DE-HGF)0$$aWähler, Tobias$$b17
000858239 7001_ $$0P:(DE-HGF)0$$aSchuster, Ralf$$b18
000858239 7001_ $$00000-0002-8607-3301$$aSchneider, M. Alexander$$b19
000858239 7001_ $$0P:(DE-HGF)0$$aMatolín, Vladimír$$b20
000858239 7001_ $$0P:(DE-Juel1)168125$$aMayrhofer, Karl$$b21
000858239 7001_ $$00000-0001-5968-0774$$aBrummel, Olaf$$b22$$eCorresponding author
000858239 7001_ $$0P:(DE-HGF)0$$aLibuda, Jörg$$b23$$eCorresponding author
000858239 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/s41563-018-0088-3$$gVol. 17, no. 7, p. 592 - 598$$n7$$p592 - 598$$tNature materials$$v17$$x1476-4660$$y2018
000858239 8564_ $$uhttps://juser.fz-juelich.de/record/858239/files/s41563-018-0088-3.pdf$$yRestricted
000858239 8564_ $$uhttps://juser.fz-juelich.de/record/858239/files/s41563-018-0088-3.pdf?subformat=pdfa$$xpdfa$$yRestricted
000858239 909CO $$ooai:juser.fz-juelich.de:858239$$pVDB
000858239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168567$$aForschungszentrum Jülich$$b5$$kFZJ
000858239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168125$$aForschungszentrum Jülich$$b21$$kFZJ
000858239 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000858239 9141_ $$y2018
000858239 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000858239 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000858239 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MATER : 2017
000858239 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000858239 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000858239 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000858239 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000858239 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000858239 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000858239 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000858239 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000858239 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000858239 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000858239 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bNAT MATER : 2017
000858239 920__ $$lyes
000858239 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000858239 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000858239 980__ $$ajournal
000858239 980__ $$aVDB
000858239 980__ $$aI:(DE-Juel1)IEK-11-20140314
000858239 980__ $$aI:(DE-82)080012_20140620
000858239 980__ $$aUNRESTRICTED
000858239 981__ $$aI:(DE-Juel1)IET-2-20140314