TY  - JOUR
AU  - Faisal, Firas
AU  - Stumm, Corinna
AU  - Bertram, Manon
AU  - Waidhas, Fabian
AU  - Lykhach, Yaroslava
AU  - Cherevko, Serhiy
AU  - Xiang, Feifei
AU  - Ammon, Maximilian
AU  - Vorokhta, Mykhailo
AU  - Šmíd, Břetislav
AU  - Skála, Tomáš
AU  - Tsud, Nataliya
AU  - Neitzel, Armin
AU  - Beranová, Klára
AU  - Prince, Kevin C.
AU  - Geiger, Simon
AU  - Kasian, Olga
AU  - Wähler, Tobias
AU  - Schuster, Ralf
AU  - Schneider, M. Alexander
AU  - Matolín, Vladimír
AU  - Mayrhofer, Karl
AU  - Brummel, Olaf
AU  - Libuda, Jörg
TI  - Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes
JO  - Nature materials
VL  - 17
IS  - 7
SN  - 1476-4660
CY  - Basingstoke
PB  - Nature Publishing Group
M1  - FZJ-2018-07139
SP  - 592 - 598
PY  - 2018
AB  - Electrocatalysis is at the heart of our future transition to a renewable energy system. Most energy storage and conversion technologies for renewables rely on electrocatalytic processes and, with increasing availability of cheap electrical energy from renewables, chemical production will witness electrification in the near future1,2,3. However, our fundamental understanding of electrocatalysis lags behind the field of classical heterogeneous catalysis that has been the dominating chemical technology for a long time. Here, we describe a new strategy to advance fundamental studies on electrocatalytic materials. We propose to ‘electrify’ complex oxide-based model catalysts made by surface science methods to explore electrocatalytic reactions in liquid electrolytes. We demonstrate the feasibility of this concept by transferring an atomically defined platinum/cobalt oxide model catalyst into the electrochemical environment while preserving its atomic surface structure. Using this approach, we explore particle size effects and identify hitherto unknown metal–support interactions that stabilize oxidized platinum at the nanoparticle interface. The metal–support interactions open a new synergistic reaction pathway that involves both metallic and oxidized platinum. Our results illustrate the potential of the concept, which makes available a systematic approach to build atomically defined model electrodes for fundamental electrocatalytic studies.
LB  - PUB:(DE-HGF)16
C6  - pmid:29867166
UR  - <Go to ISI:>//WOS:000436341400012
DO  - DOI:10.1038/s41563-018-0088-3
UR  - https://juser.fz-juelich.de/record/858239
ER  -